• Title/Summary/Keyword: Transfer System

Search Result 8,641, Processing Time 0.043 seconds

Numerical Analysis of Optimum Air-Layer Thickness in a Double Glazing Window (이중창 공기층의 최적두께에 관한 수치해석)

  • Hwang Ho June;Choi Hyoung Gwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Double pane window system, in which an air layer with a finite width is filled between glasses, is used in order to increase the insulation efficiency. In the present study, a conjugate heat transfer problem of a double pane window system has been studied numerically in order to investigate the effect of an air layer on the heat transmittance of the double pane window system using a finite element method based on P2P1 basis function. In this study on the conjugate heat transfer of a double pane window system, numerically predicted Nusselt numbers with or without conjugate heat transfer effect have been compared with an available existing empirical formula. It has been found that a Nusselt number from an existing formula for an enclosed space is different from that obtained from the present conjugate heat transfer analysis mainly due to the effects of a very high aspect ratio and conjugate heat transfer mechanism. Furthermore, it has been shown that the numerically estimated optimal air thickness of the double pane window system with conjugate heat transfer effect is a little bit longer than that obtained without considering conjugate heat transfer effect.

Prediction and improvement of the solid particles transfer rate for the bulk handing system design of offshore drilling vessels

  • Ryu, Mincheol;Jeon, Dong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.964-978
    • /
    • 2015
  • Numerous experiments with a scaled pilot facility were carried out to compare the relative bulk transfer performance of three special devices for applications to drilling systems. The pipe diameter for bulk transportation was 3 in., which corresponds to around half of the actual system dimensions. Two different pressures, 3 and 4 bar, were considered to check the relative performance under different pressure conditions at a bulk storage tank. And to make a practical estimation method of the bulk transfer rate at the early design stages of the bulk handling system, a series of experiments were conducted for real scaled bulk handing systems of two drilling vessels. The pressure drops at each pipe element as well as the bulk transfer rates were measured under different operating conditions. Using the measured results, the friction factor for each pipe element was calculated and a procedure for transfer rate estimation was developed. Compared to the measured transfer rate results for other drilling vessels, the estimated transfer rates were within a maximum 15% error bound.

Design of Variable Data Transfer Rate Asymmetric TDD System Using Turbo Decoder with Double Buffer Controller (이중 버퍼 제어기 구조의 터보 복호기를 사용한 전송률 가변 비대칭 TDD 시스템 설계)

  • Park, Byeung-Kwan;Kim, Mi-Rae;Kim, Hyo-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.161-168
    • /
    • 2019
  • This paper proposes a variable data transfer asymmetric TDD(Time Division Duplex) system for small UAV(Unmanned Aerial Vehicle) data link system. In the proposed method, a turbo decoder with a double buffer controller is proposed to apply turbo decoder with long decoding time to asymmetric TDD system. The proposed method achieves variable data transfer rate and maximum data transfer rate. The advantage of the proposed method is demonstrated by its data transfer rate. The measured data transfer rate is more than 1.8 times than that of symmetric TDD system. In addition, PER(Packet Error Rate) performance is the same and data transfer rate is variable.

Numerical calculation of contrast transfer function for periodic line-space patterns (주기적인 선물체에 대한 Contrast Transfer Function의 수치계산)

  • 김형수;전영세;이종웅;김성호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.396-402
    • /
    • 1998
  • The measurement of OTF(optical transfer function) is used for evalution of imaging performance of optical system as a standard method. In the mass-production, the contrast measurement of projected patterns is also popular because of its simplicity. In this study, a computer program which evaluates the CTF(contrast transfer function) of optical system for periodic line-space patterns is developed by using the diffraction imaging theory. The MTF(modulation transfer function) and CTF of an aberrated system are evaluated and analyzed for the third order aberrations expressed by the C-coefficients and the Zemike polynomials.

  • PDF

Transfer Capability Enhancement to Population Center Using VSC HVDC System (부하집중지로의 송전용량 증대를 위한 전압형 HVDC의 활용 방안)

  • Oh, Sea-Seung;Han, Byung-Moon;Cha, Jun-Min;Jang, Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.236-241
    • /
    • 2006
  • This paper presents a transfer capability enhancement process using VSC HVDC system which can control active power as well as reactive power. The transfer capability is constrained by stability like voltage stability as well as thermal rating of power system components. Transfer capability of the power system limited by these constraints may be enhanced by reactive power control ability and active power flow control ability of the VSC HVDC system. To enhance the transfer capability of the system using VSC HVDC, selection of the HVDC installation site is performed. In this work, power zones which consist of major power plants and their sinks are identified using power tracing and distribution factor. Alternative route of major AC transmission line in the power zone is identified as VSC HVDC system.

Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System (반응표면법을 이용한 MLCC 자동 정렬 시스템의 운영조건 최적화)

  • Kim, Jae-Min;Chung, Won-Ji;Shin, O-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.582-588
    • /
    • 2010
  • This paper presents the Application of Response Surface Method for Optimal Transfer Conditions of MLCC Alignment System. his paper is composed of two parts: (1) Testing performance verification of MLCC alignment system, compared with manual operation; (2) Applying response surface method to figuring out the optimal transfer conditions of MLCC transfer system. Based on the successfully developed MLCC alignment system, the optimal transfer conditions have been explored by using RSM. The simulations using $ADAMS^{(R)}$ has been performed according to the cube model of CCD. By using $MiniTAB^{(R)}$, we have established the model of response surface based on the simulation results. The optimal conditions resulted from the response optimization tool of $MiniTAB^{(R)}$ has been verified by being assigned to the prototype of MLCC alignment system.

Study on the Equilibrium Point of Heat and Mass Transfer between Liquid Desiccant and Humid Air with in the Solar Air Conditioning System

  • Sukmaji, I.C.;Rahmanto, H.;Agung, B.;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.161-167
    • /
    • 2009
  • The liquid solar air conditioning system is introduced as an alternative solution to control air condition and to save electrical energy consumption. The heat and mass transfer performances of dehumidifier/regenerator in liquid solar air conditioning system are influenced by air and desiccant condition. The application of this system, the thermal energy from the sun and inlet air are unable to control, but operation parameter of other components such as pump, fan and sensible cooling unit are able to control. The equilibrium point of heat and mass transfer are the liquid desiccant and inlet air conditions, where, the heat and mass are not transferred between the liquid desiccant and vapor air. By knowing equilibrium point of heat and mass transfer, the suitable optimal desiccant conditions for certain air condition are funded. This present experiment study is investigated the equilibrium point heat and mass transfer in various air and desiccant temperature. The benefit of equilibrium point heat and mass transfer will be helpful in choose and design proper component to optimize electrical energy consumption.

  • PDF

Trajectory Optimization Operations for Satellites in Elliptic Orbits

  • Won, Chang-Hee;Mo, Hee-Sook;Kim, In-Jun;Lee, Seong-Pal
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.238-243
    • /
    • 1999
  • Minimum-fuel and -time orbit transfer are two major goals of the satellite trajectory optimization. In this paper, we consider satellites in two coplanar elliptic orbits when the apsidal lines coincide, and analytically find the conditions for the two-impulse minimum-time transfer orbit using Lambert's theorem. The transfer time is a decreasing function of a variable related to the transfer orbit's semimajor axis in the minimum-time case. In the minimum-time case, there is no unique minimum-time solution, but there is a limiting solution. However, there exists a unique solution in the case of minimum-fuel transfer, fur which we find analytically the necessary and sufficient conditions. As a special case, we consider when the transfer angle is one hundred and eighty degrees. In this case, we show that we obtain the classical fuel-optimal Hohmann transfer orbit. We also derive the Hohmann transfer rime and delta-velocity equations from more general equations, which are obtained using Lambert's theorem. We note the tradeoff between minimum-time and - fuel transfer. An optimal coplanar orbit maneuver algorithm to trade off the minimum-time goal against the minimum-fuel goal is proposed. Finally, the numerical simulation results are given to demonstrate the derived theory and the algorithm.

  • PDF

Free Vibration Analysis of Double Cylindrical Shells Using Transfer of Influence Coefficent (영향계수의 전달에 의한 2중 원통형 셸의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.48-54
    • /
    • 2017
  • The transfer influence coefficient method which is an vibration analysis algorithm based on the transfer of influence coefficient is applied to the free vibration analysis of double cylindrical shells. After the computational programs for the free vibration analysis of double cylindrical shells were made using the transfer influence coefficient method and the transfer matrix method, we compared the results using the transfer influence coefficient method with those by the transfer matrix method. The transfer influence coefficient method provided the good computational results in the free vibration analysis of double cylindrical shells. In particular, The results of the transfer influence coefficient method are superior to those of the transfer matrix method when the stiffness of internal springs connecting a inside cylindrical shell and a outside cylindrical shell is very large.

Wireless Power Transfer System

  • Arai, Hiroyuki
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.143-151
    • /
    • 2011
  • This paper presents a survey of recent wireless power transfer systems. The issue of wireless power transfer is to achieve a highly efficient system with small positioning errors of the facilities setting. Several theories have been presented to obtain precise system design. This paper presents a summary of design theory for short range power transfer systems and detailed formulations based on a circuit model and an array of infinitesimal dipoles. In addition to these theories, this paper introduces a coil array scheme for improving the efficiency for off axis coils. In the microwave range, tightly coupled resonators provide a highly efficient power transfer system. This paper present san-overlay resonator array consisting of half wavelength microstrip line resonators on the substrate with electromagnetically coupled parasitic elements placed above the bottom resonators. The tight couplings between the waveguide and the load resonator give strong power transmission and achieve a highly efficient system, and enables a contact-less power transfer railroad. Its basic theory and a demonstration of a toy vehicle operating with this system are presented. In the last topic of this paper, harmonic suppression from the rectenna is discussed with respect to acircular microstrip antenna with slits and stubs.