• Title/Summary/Keyword: Transfer Robot

Search Result 188, Processing Time 0.031 seconds

A Self-Regulated Robot System using Sensor Network (센서 네트워크를 이용한 자율 로봇 시스템)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1954-1960
    • /
    • 2008
  • Modem Robot is used in all industries. Previous Robot was used by simplicity work, at recent times, robot is developed in form that can do action such as a person. Robot's action runs according to command repeat or in the every moment according to sensor's output value, achieve other action. In this raper, we studied about self-regulation transfer robot that follow Object autonomously. This robot can be used by purpose that carry heavy burden instead of human. Robot's composition is drive part which run object's position awareness Sensor, Processor that control action and Motor part. After robot is connects with Network, we did robot remote control and monitor the action situation of robot. For the methode to reduce drive error, we developed algorithm for outside environment. For an experiment we made the self-regulation robot. We showed the directivity of sensor, error of directivity and soft moving of robot. We showed the monitoring system and the execution screen for communication between robot and PC.

Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control (고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템)

  • Jung, Il-Kyun;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

Vision-based Human-Robot Motion Transfer in Tangible Meeting Space (실감만남 공간에서의 비전 센서 기반의 사람-로봇간 운동 정보 전달에 관한 연구)

  • Choi, Yu-Kyung;Ra, Syun-Kwon;Kim, Soo-Whan;Kim, Chang-Hwan;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.143-151
    • /
    • 2007
  • This paper deals with a tangible interface system that introduces robot as remote avatar. It is focused on a new method which makes a robot imitate human arm motions captured from a remote space. Our method is functionally divided into two parts: capturing human motion and adapting it to robot. In the capturing part, we especially propose a modified potential function of metaballs for the real-time performance and high accuracy. In the adapting part, we suggest a geometric scaling method for solving the structural difference between a human and a robot. With our method, we have implemented a tangible interface and showed its speed and accuracy test.

  • PDF

Standardized Design of the Transmitting Coils in Inductive Coupled Endoscope Robot Driving Systems

  • Ke, Quan;Jiang, Pingping;Yan, Guozheng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.835-847
    • /
    • 2017
  • A transmitting coil with an optimal topology and number of turns can effectively improve the performance of the wireless power transfer (WPT) systems for endoscope robots. This study proposes the evaluation parameters of the transmitting coils related to the performance of the WPT system to standardize the design of the transmitting coils. It considers both the quality factor of transmitting coils and the coupling factor between the two sides. Furthermore, an analytical model of transmitting coils with different topologies is built to exactly estimate the evaluation parameters. Several coils with the specified topologies are wound to verify the analytical model and the feasibility of evaluation parameters. In the case of a constant power received, the related evaluation parameters are proportional to the transfer efficiency of the WPT system. Therefore, the applicable frequency ranges of transmitting coils with different topologies are determined theoretically. Then a transmitting coil with a diameter of 69 cm is re-optimized both theoretically and experimentally. The transfer efficiency of the WPT system is increased from 3.58% to 7.37% with the maximum magnetic field intensity permitted by human tissue. Finally, the standardized design of the transmitting coil is achieved by summing-up and facilitating the optimization of the coils in various situations.

Control of mobile robot system with wireless transmission of image information.

  • Jeong, Sang-Hoon;Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.908-911
    • /
    • 2004
  • There are various researches on mobile robot systems. Connection method between server and client of mobile robot system is one of them. In the case of mobile robot system, when connection method between server and client is wireless than wire, applications may be expanded. Also in remote monitoring environment using mobile robot system, we are interested in an effective transmission of the image information between server and client. In this paper, Bluetooth is used for connection method between server and client. One of the major applications of Bluetooth is the cable replacement for mobile and peripheral devices. Using Bluetooth, we propose the control method of mobile robot system. Bluetooth offers fast and reliable transmissions of both voice and data over the globally available 2.4GHz ISM (Industrial, Scientific and Medical) band. It has the advantage of small size, low power and low cost. It has the disadvantage of limited range and limited bandwidth. Also in order to transfer effectively image information between remote site(server) and mobile robot system(client) using Bluetooth, we applied to MPEG-2 and MPEG-4 image compression techniques and the results are compared with each other.

  • PDF

Optimal Motion Control of 3-axis SCARA Robot Using a Finite Jerk and Gain Tuning Based on $LabVIEW^{(R)}$ ($LabVIEW^{(R)}$ 기반 3축 스카라 로봇의 유한 저크 및 게인 동조를 이용한 최적 모션 제어)

  • Kim, J.H.;Chung, W.J.;Kim, H.G.;Lee, G.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.40-46
    • /
    • 2008
  • This paper presents the optimal motion control for 3-axis SCARA robot by using $LabVIEW^{(R)}$. Specifically, for optimal motion control of 3-axis SCARA robot, we study velocity profile based on finite jerk(the first derivative of acceleration) and optimal gain tunig based on frequency response method by using $LabVIEW^{(R)}$. The velocity optimization with finite jerk aims at generating the smooth velocity profile of robot. Velocity profile based on finite jerk is acquired and applied to 3-axis SCARA robot by using $LabVIEW^{(R)}$. DSA(Dynamic Signal Analyzer) for frequency response method is programed by using $LabVIEW^{(R)}$. We obtain the bode plot of transfer function about 3-axis SCARA robot by using DSA, and perform the gain tuning considering dynamic characteristic based on the bode plot. These experiments have shown that the proposed motion control can reduce vibration displacement and response error rate each 33.7% and 51.7% of 3-axis SCARA robot.

A Study for Usability and Designing Manual Controller of a Curtain‐wall Installation Robot (커튼월 설치 로봇 컨트롤러의 설계 및 사용성 평가에 관한 연구)

  • Lee, Seung-Yeol;Seok, Jae-Heuck;Han, Jung-Wan;Kim, Byung-Hwa;Han, Chang-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.71-80
    • /
    • 2006
  • A construction robot has been developed for higher productivity and better safety in various construction fields. Especially, curtain wall is suitable for outer wall material of tall commercial building and apartment complexes. This heavy material is, however, hard to install with a manpower and outdated equipment. For this reason, the prototype of ASCI (Automation System for Curtain wall Installation) was developed. This system has a robot controller(i.e. hand-held remote control unit) for the transfer information signal between human operator and robot system. Although study has been conducted on manual controller of ASCI, hardly any information is known about the operator's opinion. In this study, a questionnaire was completed by operator to get their opinion about aspects which need to design a more comfortable and productive manual controller of construction machinery, robot included. Through the result of study, it is expected that this technical data is contributed to the robot controller design for comfort and productivity of various industrial machinery.

A study on the development of an arc sensor and its interface system for a welding robot (용접로봇을 위한 아크센서 및 인?이스 시스템 개발에 관한 연구)

  • 배강열;이지형;정창욱
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.129-140
    • /
    • 1998
  • An interface system was developed to offer the welding capability to a robot controller which had not any embedded function for arc welding before, and also an arc sensor algorithm was proposed for weld seam tracking of the welding robot. For the interface system between the robot controller and welding equipments, data communication software and interface connections were composed. The interface system was mae to correspond welding condition, correction data, operation sequence and current status with the robot controller by mutual had shaking and digital signal transfer. Graphic user interface program developed under the environment of windows made it easy to monitor data communication and operation status, and to control welding and sensing sequence. Arc sensing algorithm proposed in this study to compensate torch position error was based on a fuzzy logic with the variables of current difference and current differenced change at torch weaving extremities. The developed interface system could be successfully implemented in between welding equipments and the robot controller, and showed normal status and exact function in data and signal communication between the systems. The whole robot welding system was then examined to verify its welding and seam tracking capabilities in horizontal fillet, vertical fillet, and 3-dimensional fillet weldment. The experiments revealed sound weld bead shapes and also good seam tracing results.

  • PDF

A Diagnosis system of misalignments of linear motion robots using transfer learning (전이 학습을 이용한 선형 이송 로봇의 정렬 이상진단 시스템)

  • Su-bin Hong;Young-dae Lee;Arum Park;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.801-807
    • /
    • 2024
  • Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.

A Study on Development of Arc Sensor for Arc Welding Robot Using Consumable Electrode (소모성 전극을 사용하는 아크용접 로봇을 위한 아크센서 개발에 관한 연구)

  • 이승영;문형순;나석주;장영주;안병규
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • Arc sensor is indispensable to arc welding robot systems for compensating the joint misalignment such as mismatch of the workpiece, ill-conditioned positioner and thermal deformation during welding. Furthermore, the amount of these mismatches cannot be preivously expected, and changes from time to time. There are many kinds of seam trackers for correcting the welding path of the robot, where non-contact type sensors arc prevalently used in arc welding robot systems. In this study, an arc sensor was developed for GMA and FCA welding robot system. Since the arc sensor uses the arc characteristics during welding, the operating principle of the arc sensor must be adjusted according to the welding condition. Especially in GMA welding with the $CO_{2}$ shielding gas, the welding arc is not stable because of the short circuit and non-axial globular transfer mode of the molten droplet. In this study, the 2nd order least square curve fitting algorithm was adopted and the applicability of this algorithm was investigated for robot welding systems. For easy usage of the arc sensor, the operating parameters for arc sensor were limited to eight which can be easily determined by the operator.

  • PDF