• Title/Summary/Keyword: Transfer Robot

Search Result 187, Processing Time 0.033 seconds

Development of Fuzzy Controller for Camera Autotracking System (원격 감시카메라 자동추적시스템의 퍼지제어기 개발에 관한 연구)

  • 윤지섭;박영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2062-2072
    • /
    • 1994
  • This paper presents the development of a fuzzy controller for driving camera pan/tilt device so that the camera's viewing direction can automatically track a moving object. To achieve computational efficiency a non-contact type displacement follower is used as a feedback sensor instead of a vision camera. The displacement follower, however, is extremely sensitive to object's lighting condition and results in unstable response at high speed. To this end, a fuzzy controller is developed in such a way to provide stable tracking performance at high speed where the sensory signal is subjected to intermittant disturbances of large magnitude. The test result shows stable tracking response even for high speed and non-uniform lighting condition. The resulting camera autotracking system can be adopted as an effective tool for visual transfer in the context of teleoperation and autonomous robotics.

Task-Sequencing Design for the FMC Transfer Robot Using Traveling Salesman Problem (외판원 문제(TSP)를 이용한 FMC 반송 로봇의 작업순서 설계)

  • Kim, Woo-Kyun;Lee, Hong-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.574-577
    • /
    • 2009
  • 본 논문은 외판원 문제(TSP: Traveling Salesman Problem)를 이용하여 로봇중심의 FMC(Flexible Manufacturing Cell)에서 반송 로봇의 작업순서를 설계하는 방법을 제시하였다. 이를 위해, 먼저 다수의 설비와 반송 로봇으로 구성된 대표적인 로봇 중심의 FMC를 가상으로 설계한 후, 실험계획법을 이용하여 다양한 조건에서의 주요 반응변수들의 인과관계를 규명하였다. 실험결과, 처리량, 반송로봇의가동률, 그리고 Buffer의 평균 대기 작업물의 수가 주요 반응변수들로 선정되었으며, 이를 기반으로 순서기반 조합최적화 문제인 TSP로 로봇 작업순서를 설계하였다. 제안한 방법과 기존의 방법을 비교하기 위해서 시뮬레이션을 수행 한 결과 제안된 TSP 방법이 기존의 방법 보다 반송 로봇의 교착 (Deadlock) 상태를 방지하여 처리량 등 주요 반응변수들 모두를 향상 시키는 결과를 가져왔다. 더불어,이 방법은 본 연구에서 제시한 FMC 뿐 아니라 반도체나 LCD(Liquid Crystal Display) 생산 공정과 같이 반송 로봇에 의해 구성되어 있는 장치 산업분야에 적용가능하다는 측면에서 큰 효과가 기대된다.

  • PDF

회전체 진동감소를 위한 마그네틱 댐퍼 설계 및 응용

  • 이봉기;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.769-772
    • /
    • 1995
  • Most turbo machines, which operate at high speeds, such as gas turbines, jet engines, pumps, and compressors are prone to perrturbing vibrations. The best vibration control method for rotors is to eliminate destabilizing factors. Careful balancing application of "more stable" oil-lubricated bearing, such as tilting pad bearings or use of anti-swirl devices in seals, are examplse of passive vibration control methods. the use of magnetic bearing is an active control method. An obvious advantage of active control is that it provides damping (or modifies system stiffness or other parameters) only when there is a need for that, i.e., in emergency states, while not affecting the rotor normal operational conditions. Moreover, active control methods provide exact position control through on-line control. In this study, a magnetic actuator, digital contrliier using DSP, and bipolar operational power supply/amplifiers were developed to show the effectiveness of reducing robot vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent component was developed. Results presented in this dissertation will provide a well-defined technical parameters in designing magnetic damper system.er system.

  • PDF

Locomotive Characteristic Analysis of Terrestrial Vertebrates for the Modeling of Four-Legged Walking Machine

  • Park, S.H.;Jeong, G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.743-747
    • /
    • 2000
  • The coordinated mechanism of terrestrial vertebrates enables them to maneuver over all of the terrain conditions since they have a distinct ability to adapt to varying conditions. Their locomotions remain infinitely more advanced and elegant than that of present-day existing mechanical walking robots. However, the principles of existing walking robots are based more on technical rather than on biological concepts, yielding unstable locomotion with low speed. In order to apply these advanced biological phenomena to the mechanical design of 4-legged walking robot, modeling methods are introduced and mathematical equations are also introduced.

  • PDF

A Study on Optimum Tooth Profile of Pin-Pinion Gear for Linear Motion (직선이송용 Pin-Pinion Gear의 최적 치형에 대한 연구)

  • Ham, S.H.;Nam, W.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.64-70
    • /
    • 2010
  • In this study, designing of precise linear transferring device which can be applied to industrial machine and robot industry has been introduced. The direction of power flow and output feature are similar to current Rack-Pinion type. However, unlimited length extensity via rack modulizing, and securing high velocity transportation have been realized by applying Pin-Pinion Gear type at the operation part. The analysis has been calculated to obtain the Pin-Pinion Gear's optimized tooth profile. As a result of research, it is impossible to control precisely even overlap at the teeth of involute and sprocket. Because they have peculiar gearing structure. Therefore, modified cycloid tooth has been proposed to perform high velocity, precise control without backlash.

Experimental Study on Non-contact Type Inspection System for Wing Rib Thickness Measurement (윙립 두께 측정용 비접촉식 검사 시스템에 관한 실험적 연구)

  • Lee, In-Su;Kim, Hae-Ji;Ahn, Myung-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.104-110
    • /
    • 2014
  • This paper presents a non-contact inspection system for automatically measuring the thickness of an aircraft wing rip product. In order to conduct the inspection of the wing rib thickness automatically, a non-contact laser displacement sensor, end-effector, and a robot were selected for use. The non-contact type inspection system was evaluated by measuring the measurement deviation of the rotation direction of a C-type yoke end-effector and the transfer direction of a V-slim end-effector. In addition, the non-contact inspection system for wing rib thickness measurements was validated through thickness measurements of a web, flange, and stiffener.

Development of Automatic Gear Modeling Module Using Computer Aided Design(CAD) (컴퓨터응용설계(CAD)를 이용한 기어모델링 자동화 모듈 개발)

  • Kim, Dae-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.803-808
    • /
    • 2018
  • Combining digital automation solutions throughout recent manufacturing process is essential. Advanced robot and mechanical techniques are required for design, manufacture, and distribution process. Manual design of repetitive similar mechanical components during the development phase of these advanced machines and robots can occur wasting time and money. Developed gear design module, which is the power transfer system mechanical component, was programmed in the Visual Basic language in CATIA V5 environment. Automation Process is Based on Parametric Modeling Method. and it was found to be effective in reducing design time compared to designers manual modeling.

Smart modular robot with cart attached using AI algorithm (카트 부착 스마트 모듈형 로봇)

  • Jeong, Hee-cheol;Son, Young-woo;Kim, Eun-Ho;Kim, Tak-Yun;Moon, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1136-1139
    • /
    • 2021
  • 쇼핑카트 부착 모듈형 로봇 'Cart-Rider'는 어드미턴스 제어를 통한 사용자의 힘 보조 기능, 딥러닝을 활용한 네비게이션 기능, GPS 를 활용한 도난 방지 기능을 제공하는 로봇으로 대형 마트에서 발생하는 안전사고 및 쇼핑카트 도난을 예방하는 동시에 사용자에게 편의성을 제공하는 로봇이다. 또한 여러 대를 겹쳐서 보관하는 기존의 카트 시스템을 유지하고 탈부착이 용이하도록 하드웨어를 제작하여 환경에 영향을 주지 않고 유지 및 보수가 용이하도록 제작했다.

Learning Relational Instance-Based Policies from User Demonstrations (사용자 데모를 이용한 관계적 개체 기반 정책 학습)

  • Park, Chan-Young;Kim, Hyun-Sik;Kim, In-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.363-369
    • /
    • 2010
  • Demonstration-based learning has the advantage that a user can easily teach his/her robot new task knowledge just by demonstrating directly how to perform the task. However, many previous demonstration-based learning techniques used a kind of attribute-value vector model to represent their state spaces and policies. Due to the limitation of this model, they suffered from both low efficiency of the learning process and low reusability of the learned policy. In this paper, we present a new demonstration-based learning method, in which the relational model is adopted in place of the attribute-value model. Applying the relational instance-based learning to the training examples extracted from the records of the user demonstrations, the method derives a relational instance-based policy which can be easily utilized for other similar tasks in the same domain. A relational policy maps a context, represented as a pair of (state, goal), to a corresponding action to be executed. In this paper, we give a detail explanation of our demonstration-based relational policy learning method, and then analyze the effectiveness of our learning method through some experiments using a robot simulator.

FRF based Position Controller Design through System Identification for A Hydraulic Cylinder (유압실린더의 위치제어를 위한 시스템 인식을 통한 FRF 기반의 제어기 설계 방법)

  • Seo, Hyoung Kyu;Kim, Dong Hwan;Park, Jong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1113-1121
    • /
    • 2015
  • In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.