• Title/Summary/Keyword: Transfer Layer

Search Result 1,530, Processing Time 0.031 seconds

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

Theory of Radiative Transfer for 3.3-micron $CH_4$ emissions from the Auroral Regions of Jupiter

  • Kim, Sang Joon;Sohn, Mirim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2014
  • Radiative transfer programs to simulate the 3-micron auroral $CH_4$ emissions of Jupiter have been developed. The formalism of the radiative transfer calculations including the thermal, fluorescent, and auroral emissions of the $CH_4$ bands for an atmospheric layer having an optical depth of ${\tau}_v$ is given by: ${\mu}dI_v/d{\tau}_v=I_v-{\varpi}_v{^*}J_v(1-{\varpi}_v{^*})B_v-{\varpi}{^*}F_{ov}{e}{x}{p}(-{\tau}_v/{\mu}_o)4{\pi}-hv{\varpi}{^*}V/4{\pi}$ where ${\varpi}_v{^*}$ is the single scattering albedo of $CH_4$ consisting of Einstein A coefficient and collisional deexcitation rate. Other terms are usual radiative transfer parameters appearing in textbooks including the terms for scattered ${\varpi}_v{^*}J_v$, thermal $(1-{\varpi}_v{^*})B_v$, and attenuated solar radiations $F_{ov}$ at the certain atmospheric layer. For auroral excitations, we include V, which is the number of excited states per $cm^3$ persec by auroral particle bombardments. We apply this formalism to the high-resolution spectra of the auroral regions observed with GNIRS/Gemini North, and will present preliminary results for the 3 micron auroral processes of Jupiter.

  • PDF

Parametric comparative study of Rocket Nozzle Convective Heat Transfer Coefficient Application of Combustion gas characteristic and Method of Analysis (해석방법 및 연소가스특성 적용에 따른 로켓 노즐 대류열전달계수의 매개변수적 비교 고찰)

  • Kim, Yonggu;Bae, Joochan;Kim, Jinok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.651-663
    • /
    • 2017
  • Experimental results of $30^{\circ}-15^{\circ}$ nozzles were compared with numerically calculated convective heat transfer coefficients using FLUENT, Boundary Layer Integration Method and Bartz predictions. Also, the convective heat transfer coefficients were calculated by using FLUENT and boundary layer integration method for NASA HIPPO nozzles according to the characteristics of combustion gas and the correlation between pressure and pressure was compared. Finally, thermal analysis of NASA HIPPO nozzle was performed to compare the ablation thickness and char depth according to the combustion gas characteristics.

  • PDF

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells (ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용)

  • Jo, Yeongsu;Woo, Chae Young;Hong, Soon Kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei;Zhang, Xue;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.908-917
    • /
    • 2020
  • Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

Fabrication and Properties of Organic Semiconductor CuPccp LB Thin Film (유기 반도체 CuPccp LB초박막의 제작 및 특성)

  • Jho, Mean Jea;Xouyang, Saiyang;Lee, Jin Su;Ahn, Da Hyun;Jung, Chi Sup
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • A copper tetracumylphenoxy phthalocyanine (CuPccp) thin film was formed on an organic insulator film by Langmuir-Blodgett (LB) deposition for gas sensor fabrication. To increase the reproducibility of film transfer, stearyl alcohol was used as a transfer promoter. The structural properties of the CuPccp layers were optically monitored through attenuated total reflection and polarization-modulated ellipsometry techniques. The average thickness of a single layer of the CuPccp LB film was measured to be 2.5 nm. Despite the role of the transfer promoter, the stability of the layer transfer was not sufficient to ensure homogeneity of the LB film. This was probably due to the presence of aggregates in the molecular structure of the CuPccp LB film. Nevertheless, copper phthalocyanine polymorphism can be greatly suppressed by the LB arrangement, which appears to contribute to the improvement of electrical conductivity. The p-type semiconductor characteristics were confirmed by Hall measurements from the CuPccp LB films.

Experimental Study on Local Mass Transfer Characteristics of Flat Plate Using Tripping Wire (트리핑 와이어를 사용한 평판에서의 국소물질전달 특성에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Cho, Woong-Sun;Jo, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • The purpose of this research is to investigate how the boundary layer separation caused by a tripping wire installed in front of the flat plate affects the transition from laminar to turbulent flow, and consequently mass transfer. A naphthalene sublimation technique is used to measure the local mass transfer coefficients on the flat plate, and two boundary conditions for the developed and developing flow are considered to evaluate the effects of the flow boundary. The local mass transfer data for a flat plate with a tripping wire are compared with the data for a flat plate without a tripping wire. The variation trends of the local heat transfer coefficients for the plates with and without the tripping wire are similar to each other in the case of the developing flow, but are quite different for the developed flow. The average Sherwood number for the flat plate with a tripping wire is much higher than that without a tripping wire because of the boundary layer separation.

Effects of Prandtl Numbers on Heat Transfer of Backward-Facing Step Laminar Flow with a Pulsating Inlet (입구유동 가진이 있는 층류 후향계단 유동에서 열전달에 대한 프란틀수 효과해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.923-930
    • /
    • 2012
  • The wall heat transfer of backward-facing step laminar flows with different Prandtl numbers and a pulsating inlet is investigated by unsteady simulations. The inlet is perturbed by the variation of frequency and amplitude. Temperature-dependent transport properties are adopted. Various characteristics of the wall heat transfer are explained by the variation of the thermal boundary layer. For Pr < 1, the wall heat transfer of temperature-dependent properties is decreased compared to that of constant properties, whereas it increases for Pr < 1. In addition, the wall heat transfer increases depending on the pulsating amplitude. However, the results of frequency variation for St < 0.2 show that the heat transfer is strongly enhanced at a specific frequency. In particular, the increase in the wall heat transfer is strongly related to the root mean square of the fluctuations of the reattachment length.

Analysis of Heat Transmission Characteristics through Air-Inflated Double Layer Film by Using Thermal Resistance Equation (열저항식을 이용한 공기막 이중필름의 관류전열량 특성 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.316-321
    • /
    • 2013
  • This study was carried out to analyze heat transfer characteristics and heat flow through air-inflated double layer PO film with thermal resistance method. The experiments was conducted in the laboratory controlled air temperature between 258.0 K and 278.0 K. The experimental materials were made up two layers PO film and an inflated-air layer. The thickness of air-inflated layer was fixed at 3 types of 110, 175, 225 mm. The electrical circuit analogy for heat transfer by conduction, radiation and convection was introduced. Experimental data shows that the dominant thermal resistance in heat transfer through the air-inflated double layer film was convection. Calculation errors were 1.1~18.5 W for heat flow. In result, the method of thermal resistance could be introduced for analysis of heat flow characteristics through air-inflated double layer film.

Heat Transfer on Supersonic Nozzle using Combined Boundary Layer Integral Method (수치해석 통합기법을 이용한 노즐 내열재 표면의 열전달 해석)

  • Bae, Ji-Yeul;Bae, Hyung Mo;Ryu, Jin;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • A boundary layer integral combined with a 1-D isentropic core flow model has been successfully used to determine heat transfer rate on the surface of a supersonic nozzle. However its accuracy is affected by the core flow condition which is used as a boundary condition for the integral calculation. Because flow behavior near a nozzle throat deviates from 1-D isentropic condition due to 2-D flow turning and interaction between core flow and boundary layer, accuracy of heat transfer calculation decreases at a nozzle throat. Therefore, CFD is adopted to deduce improved core flow condition and increase accuracy of boundary layer integral at nozzle throat in this research. Euler model and SST $k-{\omega}$ model is solved by CFD code and used as a boundary condition for boundary layer integral. Developed code is tested in the supersonic nozzle from the previous research and improvement in accuracy is observed, especially at nozzle throat and diverging section of the nozzle. Error between experimental result and calculation result reduced by 16% when a calculation is made based on the SST $k-{\omega}$ model. Method developed in this research is expected to be used in thermal design of the rocket nozzle.