• Title/Summary/Keyword: Transdermal Permeation

Search Result 120, Processing Time 0.149 seconds

Development of Transdermal Drug Delivery System for the Combination of Physostigmine and Procyclidine

  • Park, Soon-Cheol;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.181-184
    • /
    • 2001
  • The purpose of this study was to develop transdermal drug delivery system (TDDS) for the combination of physostigmine and procyclidine. The effects of various pressure sensitive adhesives (PSA) on the percutaneous absorption of procyclidine across hairless mouse skin were evaluated to select an appropriate PSA. In addition, the influences of various vehicles on the percutaneous absorption of procyclidine from PSA matrix across hairless mouse skin were evaluated using flow-through diffusion cell system at $37^{\circ}C$. Physostigmine did not have any influence on the permeation rate of procyclidine. The flux of procyclidine was the highest in silicone and PIB and was relatively lower in SIS, Acryl, and SBS adhesive matrices, however, their use was limited by the crystallization of the drug in the matrix. Among acrylic adhesives, the permeability of procyclidine was the highest from poly (ethylene oxide) grafted acrylic adhesive. Some enhancers show different enhancing effect depending on the drug, however, many of the tested enhancers showed enhancing effect for the permeation of both procyclidine and physostigmine to some extent. $Crovol^{\circledR}$ EP 40 showed the highest enhancing effect on the permeation of both compounds. The size of TDDS to provide required permeation rate was estimated to be $35\;cm^2$ based on available information.

  • PDF

Transdermal Delivery System of Triamcinolone Acetonide from a Gel Using Phonophoresis

  • Yang Jae-Heon;Kim Dae-Keun;Yun Mi-Young;Kim Tae-Youl;Shin Sang-Chul
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.412-417
    • /
    • 2006
  • Triamcinolone acetonide (TA) is a corticosteroid that is used in the systemic and topical treatment of many inflammatory diseases. In this study, a phonophoretic drug delivery system was designed to enhance the TA permeability and the influence of ultrasound was examined. In order to establish the transdermal delivery system for TA, a hydrophilic carbopol gel containing TA was prepared after adopting phonophoresis. A permeation study through mouse skin was performed at $37^{\circ}C$ using a Franz diffusion cell, and the ultrasound treatment was carried out for 10 h. The level of TA permeation through the skin was evaluated under various ultrasound conditions including the frequency (1.0, 3.0 MHz), intensity (1.0, $2.5W/cm^2 $), and duty cycle (continuous, pulse mode) using a 0.5% TA gel. The highest permeation was observed under the ultrasound treatment conditions of low frequency, high intensity, and in continuous mode.

Transdermal Delivery of Diclofenac Using Microemulsions

  • Kweon, Jang-Hoon;Chi, Sang-Cheol;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.351-356
    • /
    • 2004
  • A transdermal preparation containing diclofenac diethylammonium (DDA) was developed using an O/W microemulsion system. Of the oils tested, lauryl alcohol was chosen as the oil phase of the microemulsion, as it showed a good solubilizing capacity and excellent skin permeation rate of the drug. Pseudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant and cosurfactant for microemulsion formation, and the effect of these additives on skin permeation of DDA was evaluated with excised rat skins. The optimum formulation of the microemulsion consisted of 1.16% of DDA, 5% of lauryl alcohol, 60% of water in combination with the 34.54% of Labrasol (surfactant)/ethanol (cosurfactant) (1:2). The efficiency of formulation in the percutaneous absorption of DDA was dependent upon the contents of water and lauryl alcohol as well as Labrasol: ethanol mixing ratio. It was concluded that the percutaneous absorption of DDA from microemulsions was enhanced with increasing the lauryl alcohol and water contents, and with decreasing the Labrasol:ethanol mixing ratio in the formulation.

Evaluation of Physico-chemical Properties of Acrylic Resin Hydrogel and their Application to Transdermal Delivery System

  • Chung, Uoo-Tae;Choi, Seung-Man;Kang, Kee-Long;Kim, Nak-Seo;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 1995
  • Recently, many attempts have been made to use hydrogels of various polymers as delivery systems of various drugs and bioactive materials to prolong and control their phamacological activities. In this study, we have evaluated the physico-chemical properties of methacrylic acid-methyacrylic acid methyl ester copolymer 9Eudispert mv)m a acrylic resin hydorgel, and its application to transdermal delivery system. In the dissolution tests, the release rate of salicylic acid (SA) and sodium salicylate (SOd. SA) were faster than lidocain (LD) and lidocain-HCl(LD-HCl). As the concentration of Eudispert mv polymer increased, the extensibility of Eudispert mu hydrogel decreased, whereas the swelling ratio increased. The more NaOH and polymer concentration increased, the more osmotic pressure linearly increased. The skin permeation of Sod. SA, an acidic model drug, was remarkably enhanced by Eudispert mv hydrogel. All fatty acids, except for Sod. glycolate, dramatically increased the skin permeation flux in Eudispert mu hydrogel containing LD-Hcl, a basic model drug. Consequently, it is suggested that Eudispert mv hydrogel may be used as potential transdermal delivery vehicle.

  • PDF

Formulation Design for Skin Permeation of Lincomycin Cream (린코마이신 크림의 피부투과를 위한 처방설계)

  • 김미정;김영일;양재헌
    • YAKHAK HOEJI
    • /
    • v.47 no.3
    • /
    • pp.154-158
    • /
    • 2003
  • Lincomycin, a selective tyrosinase blocker, has been thought to be effective in the treatment of melanogenesis, ephelis, post inflammatory pigmentation, and facial discoloration. In an attempt to develop a transdermal perparation for lincomycin, this study was designed to examine the appropriate contents of various surfactants and ethanol in the cream preparation. Frans type diffusion cell was used to investigate permeation efficiency of the preparation, and lincomycin in the receptor phase was measured by HPLC. After having a 1.5 hrs of leg time, the permeability of lincomycin was rapidly increased by adding surfactants, and varied with different types of surfactants after 10 hrs, the permeability of Brij 56$^{(R)}$ preparation (501.4$\pm$45 $\mu\textrm{g}$/mι) was greater than that either of Labrasol$^{(R)}$ (263.9$\pm$33.7 $\mu\textrm{g}$/mι) or Tween$^{(R)}$20(386.2$\pm$26.7 $\mu\textrm{g}$/mι). Ethanol also increased the permeability of lincomycin.mycin.

In Vitro Percutaneous Absorption of Ondansetron Hydrochloride from Pressure-sensitive Adhesive Matrices through Hairless Mouse Skin

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.644-648
    • /
    • 2003
  • To investigate the feasibility of developing a new ondansetron transdermal system, the effects of vehicles and penetration enhancers on the in vitro permeation of ondansetron hydrochloride (OS) from a pressure-sensitive adhesive (PSA) matrices across dorsal hairless mouse skin were studied. Vehicles employed in this study consisted of various ratios of propylene glycol monocaprylate (PGMC)-diethylene glycol monoethyl ether (DGME) co-solvents and PGMC-propylene glycol (PG) co-solvents with 3% oleic acid. $Duro-Tak^\circledR$ 87-2100 and $Duro-Tak^\circledR$ 87-2196 were used as PSAs. The concentration of DGME in PGMC-DGME co-solvent system affected the release rate; as the concentration of DGME increased, the release rate decreased. The cumulative release amount of OS increased as the ratio of PSA to drug solution decreased. The permeation flux was also primarily affected by the amount of PSAs; as the amount decreased, the permeation flux increased. The overall fluxes from matrix formulations were significantly lower when compared to those obtained from solution formulations. The ratio of PG to PGMC did not affect permeation flux, while the lag time decreased significantly from $5.14\pm3.31 to 0.31\pm0.12$ h as the PG increased from 40% to 60%.

Controlled Transdermal Delivery of Loxoprofen from an Ethylene-Vinyl Acetate Matrix

  • Ryu, Sang-Rok;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.347-354
    • /
    • 2011
  • Repeated oral administration of loxoprofen can induce many side effects such as gastric disturbances and acidosis. Therefore, we considered alternative routes of administration for loxoprofen to avoid such adverse effects. The aim of this study was to develop an ethylene-vinyl acetate (EVA) matrix system containing a permeation enhancer for enhanced transdermal delivery of loxoprofen. The EVA matrix containing loxoprofen was fabricated and the effects of drug concentration, temperature, enhancer and plasticizer on drug release were studied from the loxoprofen-EVA matrix. The solubility of loxoprofen was highest at 40% (v/v) PEG 400. The release rate of drug from drug-EVA matrix increased with increased loading dose and temperature. The release rate was proportional to the square root of loading dose. The activation energy (Ea), which was measured from the slope of log P versus 1000/T, was 5.67 kcal/mol for a 2.0% loaded drug dose from the EVA matrix. Among the plasticizer used, diethyl phthalate showed the highest release rate of loxoprofen. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the greatest enhancing effect. In conclusion, for the enhanced controlled transdermal delivery of loxoprofen, the application of the EVA matrix containing plasticizer and penetration enhancer could be useful in the development of a controlled drug delivery system.

Preparation and Evaluation of Aceclofenac Microemulsion for Transdermal Delivery System

  • Yang, Jae-Heon;Kim, Young-Il;Kim, Kyung-Mi
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.534-540
    • /
    • 2002
  • To develop novel transdermal formulation for aceclofenac, microemulsion was prepared for increasing its skin permeability. Based on solubiity and phase studies, oil and surfactant was selected and composition was determined. Microemulsion was spontaneously prepared by mixing ingredients and the physicochemical properties such was investigated. The mean diameters of microemulsion were approximately 90 nm and the system was physically stable at room temperature at least for 3 months. In addition, the in vitro and in vivo performance of microemulsion formulation was evaluated. Aceclofenac was released from microemulsion in acidic aqueous medium, and dissolved amounts of aceclofenac was approximately 30% after 240 min. Skin permeation of aceclofenac from microemulsion formulation was higher than that of cream. Following transdermal application of aceclofenac preparation to delayed onset muscle soreness, serum creatine phosphokinase and lactate dehydrogenase activity was significantly reduced by aceclofenac. Aceclofenac in microemulsion was more potent than cream in the alleviation of muscle pain. Therefore, the microemulsion formulation of aceclofenac appear to be a reasonable transdermal delivery system of the drug with enhanced skin permeability and efficacy for the treatment of muscle damage.

In vitro Rat Skin Permeation of Various NSAIDs (다양한 비스테로이드성 소염진통제의 쥐 피부 투과)

  • Kim, Min-Jung;Doh, Hea-Jeong;Cho, Won-Jea;Yong, Chul-Soon;Choi, Han-Gon;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.313-319
    • /
    • 2002
  • Rat skin permeation of various nonsteroidal antiinflammatory drugs (NSAIDs) was investigated in vitro using Franz diffusion cell at $37^{\circ}C$. The effect of various skin permeation enhancers was also observed as a preliminary study of developing transdermal delivery systems of NSAIDs. Lipophilicity of NSAIDs was determined from thε partition coefficient (log P) in 1-octanol/water and 1-octanol/IPB mutual-saturated solutions. The solubility was determined in water, isotonic phosphate buffer (IPB), and propylene glycol (PG) at $37^{\circ}C$. The rat skin permeation rate of acetaminophen, piroxicam, and aceclofenac was almost negligible, although they were saturated in PG. Addition of 1 % permeation enhancer increased the permeation rate of ketoprofen, ketorolac, and diclofenac. However, the skin permeation rate of ibuprofen did not increase with the addition of various enhancers. Among the permeation enhancers testεd, oleic acid was the most effective for various NSAIDs. Based on the daily dose, lipophilicity, and the skin permeation ratε achieved in this study, ketoprofen and ketorolac seem to be the most promising drug candidates for transdermal delivery systems, especially when formulated with unsaturated fatty acids, such as oleic acid.

Skin Permeability of piroxicam Gel by Phonophoretic Transdermal Drug Delivery (음파영동 경피약물수송에 의한 Piroxicam Gel의 경피투과)

  • Choi Suk-Joo;Oh Myung-Hwa;Kim Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.147-162
    • /
    • 2002
  • Transdermal permeation enhancer has been used to increased skin absorption. External control of drug release and skin absorption can also be achieved by iontophoresis or phonophoresis. However, because several problems with iontophoresis are that it has a risk to skin damage because of the change of pH and the increase of current density in applying it and that it can be applied only in the form of water solution, This study is to enhance drug permeation via skin following application of ultrasound. For this goal, in gel containing piroxicam, the degree of skin permeation in vitro and anti-inflammatory effect in in vivo were investigated. Permeation study using hairless mouse skin was performed at 37 $^{\circ}C$ using buffer saline as the receptor solution. The amount of piroxicam were quantified using a HPLC system consisting of solvent delivery system. Following adoption of ultrasound 1 MHZ, it showed relatively high permeation rate where it was compared with non treated by ultrasound. The influence of duty cycle having an effect on skin permeation rate was slight higher in the case of using pulsed mode. Skin permeation increase attended by intensity of ultrasound, the permeation of trice was accelerated at 2.0 W/$cm^{2}$ than 1.0 W/$cm^{2}$. The skin permeation of piroxicam was substantially influenced by ultrasound. Anti-inflammatory effects were determined using carrageenan-induced paw swelling method in SD rat. Paw swelling tests showed that pulsed phonophoresis group was more effective than control group and only gel application group. The conclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory effect in vivo.

  • PDF