• Title/Summary/Keyword: Transcritical system

Search Result 33, Processing Time 0.019 seconds

Analysis on the Performance of a Transcritical Cycle Using Carbon Dioxide (이산화탄소를 이용한 초월임계사이클의 성능해석)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.471-479
    • /
    • 2003
  • A simulation on the performance of a transcritical $CO_2$ heat pump system is carried out to investigate its characteristics for various operating conditions. Cycle simulation models are established for a steady-state simulation and are verified by comparing experimental data. Based on correlations and methods available in the literature, the processes in individual components of the transcritical cycle are simulated to analyze the performance of $CO_2$ transcritical heat pump system. The simulation models are good enough to predict the performance of a $CO_2$ transcritical cycle. Simulation results are provided to show the relative effects when varying the size of internal heat exchanger and the discharge pressure of a compressor.

Development of Optimum High Pressure Algorithm for a Transcritical $CO_2$ Mobile Air-Conditioning System ($CO_2$ 자동차 에어컨 시스템의 최적 고압 설정 알고리즘 개발에 관한 연구)

  • Lee, Jong-Bong;Lee, Jun-Kyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.159-165
    • /
    • 2008
  • This paper deals with the optimum high pressure control algorithm for a transcritical $CO_2$ mobile air-conditioning system with belt-driven compressor to achieve the maximum COP. The experiments were performed to find out the maximum COP conditions with various operating conditions. The experimental results showed that the COP was increased and then decreased with increase of the refrigerant high pressure for the system. Therefore the value of high pressure which has maximum COP could be selected. Furthermore, the strong (linear) relation between the optimum high pressure and the gas cooler outlet temperature was revealed, which suggests the use of a simple controller with only one parameter for the transcritical $CO_2$ cycle.

Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide (이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.

Thermal Performance Analysis of Circular Coil Type Internal Heat Exchanger for Transcritical $CO_2$ System (천임계 $CO_2$ 시스템용 코일형 내부 열교환기의 열성능 해석)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.531-542
    • /
    • 2002
  • Transcritical$CO_2$ systems are under consideration for use as residential/mobile air conditioners. In these systems, an internal heat exchanger is usually adopted to improve both capacity and/or COP of the $CO_2$ system in lower operating pressure range of gas cooler. A program has been developed to analyse the performance of internal heat exchangers using the section-by-section method. The internal heat exchanger of coaxial configuration is first analyzed and fairly good agreements with the data are obtained, And then the internal heat exchanger of multiple circular coil configuration has been investigated. The results obtained from the parametric study provide the guidelines for the initial design and manufacturing concepts of the internal heat exchanger in transcritical $CO_2$ system. Further studies are necessary to develop the heat transfer correlations of carbon dioxide in the tubes to obtain more accurate results.

Comparison of Performance in CO2 Cooling System with an Ejector for Various Operating Conditions (다양한 운전조건에서 이젝터를 적용한 CO2 냉동기의 성능비교)

  • Kang, Byun;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.505-512
    • /
    • 2011
  • Recently, many researchers have analyzed the performance of the transcritical $CO_2$ refrigeration cycle in order to identify opportunities to improve the system energy efficiency. The reduction of the expansion process losses is one of the key issues to improve the efficiency of the transcritical $CO_2$ refrigeration cycle. In this study, the analytical study on the performance characteristics of $CO_2$ cycle with an ejector carried out with a variation of outdoor temperature, gascooler inlet air velocity, evaporator inlet air velocity, and evaporator inlet air temperature. As a result, the system performance could be improved over 85% by using an ejector for various operating condition because of the reduction of compressor work. Moreover, the cooling capacity increased about 18% for variable outdoor condition. Therefore, the high performance of an ejector system could be maintained for wide operating conditions and system reliability could be improved compared to that of a basic system.

Effects of Operating Parameters on Cooling Performance of a Transcritical $CO_2$ Mobile Air-Conditioning System (운전조건 변화가 $CO_2$ 자동차 에어컨 시스템의 냉방성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Jun-Kyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with the research for the effects of the operating parameters that could be used for a transcritical $CO_2$ mobile air-conditioning system on the cooling performance. The experimental conditions of the performance tests for a system and components such as a gas cooler and an evaporator were suggested to compare the performance of each with the standardized test conditions. And this research presents experimental results for the performance characteristics of a $CO_2$ mobile air conditioning system with various operating conditions such as different gas cooler inlet pressures and frontal air velocities/temperatures passing through an evaporator and a gas cooler. Experimental results show that the cooling capacity was more than 5kW and coefficient of performance (COP) was more than 2.1, also. Therefore, we checked that the mobile air-conditioning system using $CO_2$ has good performance compared to that using HFC-134a.

A Numerical Analysis of a Discontinuous Flow with TVD Scheme (TVD기법을 이용한 불연속 흐름의 수치해석)

  • Jeon, Jeong-Sook;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.597-608
    • /
    • 2003
  • A transcritical flow occurs when the width and slope of a channel are varying abruptly. In this study, the transcritical flow in a two-dimensional open channel is analyzed by using the shallow-water equations. A weighted average flux scheme that has flux limiter with a total variation diminishing condition is introduced for a second-order accuracy in time and space, and non- spurious oscillations at discontinuous points. A HLLC method with three wane speeds is employed to calculate the Riemann problem. To overcome difficulties resulting from variation of channel sections in a two-dimensional analysis of transcritical flow, the numerical model is developed based on a generalized grid system.

Simulation Study on the Performance Improvement of a Transcritical Carbon Dioxide Cycle (초월임계 이산화탄소 사이클의 성능향상에 관한 시뮬레이션 연구)

  • 조홍현;김용찬;서국정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.158-166
    • /
    • 2004
  • The performance of a heat pump using $CO_2$ is predicted and analyzed by using a cycle simulation model developed in this study. Cycle simulations are conducted by varying design parameters and operating conditions with the applications of advanced techniques to improve system performance. The applied systems in the simulations are internal heat exchanger, expander, and 2-stage compression with intercooling. As a result, the applications of advanced techniques improve the heating and cooling performances of the transcritical $CO_2$ cycle by 8∼26% and 20∼30%, respectively, over the basic cycle.

Experimental Study on Optimal Design of Internal Heat Exchanger for $CO_2$ System ($CO_2$ 시스템에서 내부열교환기 최적설계에 대한 실험적 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2085-2090
    • /
    • 2007
  • This paper describes the possible way to improve the capacity, the efficiency and the pressure drop of $CO_2$ system. It is considered the use of an internal heat exchanger (IHX) to improve the performance of the $CO_2$ system. Experiment was performed by changing a tube shape, a tube number and a tube length of IHX to investigate the performance of IHX for $CO_2$ system. The focus of the present study is to obtain the concept on IHX optimal design. Experimental results show that design parameters are closely related with the capacity and the pressure drop of $CO_2$ system. In the transcritical $CO_2$ cycle, the system performance is very sensitive to the IHX design. System performance on operation condition and shape of IHX is also introduced.

  • PDF

Performance Analysis of R744 (Carbon Dioxide) Transcritical Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R744용 초임계 냉동사이클의 성능 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.459-465
    • /
    • 2009
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system. These internal heat exchangers(liquid-suction or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as gas cooler pressure and evaporation temperatures, superheat in the evaporator and temperature of gas cooler outlet, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R744, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative capacity index) of this system. With a thorough grasp of these effect, it is necessary to design the R744 compression refrigeration cycle using internal heat exchanger.