• Title/Summary/Keyword: Transcriptomics

Search Result 69, Processing Time 0.029 seconds

Viral Hemorrhagic Septicemia Virus NV Gene Decreases Glycolytic Enzyme Gene Transcription (바이러스성 출혈성 패혈증 바이러스 NV 단백질에 의한 glucokinase 전사 활성의 억제)

  • Cho, Mi Young;Hwang, Jee Youn;Ji, Bo Young;Park, Myoung Ae;Seong, Mi So;Kim, So Young;Jung, Ye Eun;Cheong, Jae Hun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1470-1476
    • /
    • 2016
  • The viral hemorrhagic septicemia virus (VHSV), which belongs to the Novirhabdovirus genus of the Rhabdoviridae family, is a viral pathogen that causes severe losses in the olive flounder farming industry. Among six encoding VHSV proteins, the non-virion (NV) protein has been shown to have an impact on virulence. In our previous studies, transcriptomics microarray analysis by using VHSV-infected olive flounder showed that VHSV infection significantly down-regulated the mRNA expression of glycolytic enzymes. In addition, VHSV NV protein variants decreased the intracellular ATP level. Based on these results, we have tried to examine the effect of VHSV NV protein on glycolytic enzyme glucokinase expression, which phosphorylates glucose to glucose 6-phosphate. Our results indicated that the NV protein significantly decreased the mRNA expression of glucokinase in olive flounder HINAE cells. Furthermore, the NV protein played a negative role in the promoter activation of glucokinase. Furthermore, glucose uptake was effectively inhibited by VHSV infection and NV protein expression in olive flounder HINAE cells. These results suggest that the VHSV NV protein negatively regulates glycolytic enzyme expression by a transcription level and eventually leads to gradual morbidity of olive flounder through cellular energy deprivation. The present results may be useful for the prevention and diagnosis of VHSV infection in olive flounder.

Microbial Diversity in Korean Traditional Fermenting Starter, Nuruk, Collected in 2013 and 2014

  • Seo, Jeong Ah
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.11-11
    • /
    • 2015
  • A total of sixty-six samples of Nuruk, a fermention starter used to make the Korean traditional rice wine, Makgeolli, were collected from central and southern regions of Korea in 2013 and 2014. We classified two groups of the Nuruk samples, "commercial" and "home-made", according to the manufacturing procedure and purpose of use. Commercial Nuruks were made in a controlled environment where the temperature and humidity are fixed and the final product is supplied to Makgeolli manufacturers. Home-made Nuruks were made under uncontrolled conditions in the naturally opened environment and were intended for use in the production of small amounts of home-brewed Makgeolli. We obtained more than five hundred isolates including filamentous fungi and yeasts from the Nuruk samples followed by identification of fungal species. Also we stored glycerol stocks of each single isolate at $-70^{\circ}C$. We identified the species of each isolate based on the sequences of ITS regions amplified with two different universal primer pairs. We also performed morphological characterization of the filamentous fungi and yeast species through observations under the microscope. We investigated the major fungal species of commercial and home-made Nuruks by counting the colony forming units (CFU) and analyzing the occurrence tendency of fungal species. While commercial Nuruks contained mostly high CFU of yeasts, home-made Nuruks showed relatively high occurrence of filamentous fungi. One of the representative Nuruk manufacturers used both domestic wheat bran and imported ones, mainly from US, as raw material. Depending on the source of ingredient, the fungal diversity was somewhat different. Another commercial Nuruk sample was collected twice, once in 2013 and again in 2014, and showed different diversity of fungal species in each year. Nuruks obtained from the southern regions of Korea and Jeju island showed high frequency of yeast such as Saccharomycopsis fibuligera and Pichia species as well as unique filamentous fungus, Monascus species. S. fibuligera was easily found in many Nuruk samples with high CFU. The major filamentous fungi were Aspergillus, Lichtheimia, Mucor and Penicillium species. In order to further our understanding of the isolates and their potential industrial applications, we assayed three enzymes, alpha amylase, glucoamylase and acid protease from 140 isolates out of about five hundred isolates and selected about 10 excellent strains with high enzyme activities. With these fungal isolates, we will perform omics analyses including genomics, transcriptomics, metabolic pathway analyses, and metabolomics followed by whole genome sequencing of unique isolates associated with the basic research of Nuruk and that also has applications in the Makgeolli making process.

  • PDF

The development of the 2020 Dietary Reference Intakes for Korean population: Lessons and challenges (2020 한국인 영양소 섭취기준 제·개정: 교훈과 도전)

  • Kwon, Oran;Kim, Hyesook;Kim, Jeongseon;Hwang, Ji-Yun;Lee, Jounghee;Yoon, Mi Ock
    • Journal of Nutrition and Health
    • /
    • v.54 no.5
    • /
    • pp.425-434
    • /
    • 2021
  • The discovery of the relationship between nutrients and deficiency diseases during the 100 years from the mid-1800s to the mid-1900s was a breakthrough that led to advances in the study of nutrition. The Recommended Dietary Allowances (RDA) were created as a quantitative standard for avoiding diseases caused by nutrient deficiency. In addition, a reductionism paradigm has become generally accepted among nutrition scholars in health and disease, which focused on the properties of individual nutrients, content in foods, cellular levels, and mechanisms of action. The reductionist paradigm worked very well for the prevention and treatment of malnutrition diseases. However, as the incidence of nutrient deficiencies decreased and that of chronic diseases increased, the nutrition goals have been changed to secure safe and adequate nutrient intake and to reduce chronic disease risks. Accordingly, Dietary Reference Intakes (DRIs), a set of nutrient-based reference values, were designed to replace the RDA. The revised Korean DRIs were published for 40 nutrients in 2020. However, there is still room for improvement in the reference intake levels targeted at reducing the risk of chronic disease. The reductionist approach can no longer be practical because chronic diseases are related to the interactions between multi-components in the foods and multi-targets in the body. Therefore, a second innovative leap is needed following the nutrition development breakthrough made over 100 years ago. To this end, the nutrition paradigm must evolve from reductionism to a holism approach. Cutting-edge scientific technologies, such as metabolomics, transcriptomics, microbiomics, and bioinformatics, should also be acceptable in nutrition science based on the knowledge gained from basic nutrition studies.

Transcriptome and Flower Color Related Gene Analysis in Angelica gigas Nakai Using RNA-Seq (RNA-seq을 이용한 참당귀의 전사체 분석과 꽃 색 관련 유전자 분석)

  • Kim, Nam Su;Jung, Dae Hui;Park, Hong Woo;Park, Yun mi;Jeon, Kwon Seok;Kim, Mahn Jo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.73-73
    • /
    • 2019
  • Angelica gigas Nakai (Korean danggui), a member of the Umbelliferae family, is a Korean traditional medicinal plant whose roots have been used for treating gynecological diseases. Transcriptomics is the study of the transcriptome, which is the complete set of RNA transcripts that are produced by the genome, using high-throughput methods, such as microarray analysis. In this study, transcriptome analysis of A.gigas Nakai was carried out. Transcriptome sequencing and assembly was carried out by using Illumina Hiseq 2500, Velvet and Oases. A total of 109,591,555 clean reads of A. gigas Nakai was obtained after trimming adaptors. The obtained reads were assembled with an average length of 1,154 bp, a maximum length of 13,166 bp, a minimum length of 200 pb, and N50 of 1,635 bp. Functional annotation and classification was performed using NCBI NR, InterprotScan, KOG, KEGG and GO. Candidate genes for phenylpropanoid biosynthesis were obtanied from A.gigas transcriptome and the genes and its proteins were confirmed through the NCBI homology BLAST searches, revealing high identity with other othologous genes and proteins from various plants pecies. In RNA sequencing analysis using an Illumina Next-Seq2500 sequencer, we identified a total 94,930 transcripts and annotated 71,281 transcripts, which provide basic information for further research in A.gigas Nakai. Our transcriptome data reveal that several differentially expressed genes related to flower color in A.gigas Nakai. The results of this research provide comprehensive information on the A.gigas Nakai genome and enhance our understanding of the flower color related gene pathways in this plant.

  • PDF

Effector Memory CD8+ and CD4+ T Cell Immunity Associated with Metabolic Syndrome in Obese Children

  • Yang, Da-Hee;Lee, Hyunju;Lee, Naeun;Shin, Min Sun;Kang, Insoo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • Purpose: We investigated the association of effector memory (EM) CD8+ T cell and CD4+ T cell immunity with metabolic syndrome (MS). Methods: Surface and intracellular staining of peripheral blood mononuclear cells was performed. Anti-interleukin-7 receptor-alpha (IL-7Rα) and CX3CR1 antibodies were used to stain the subsets of EM CD8+ T cells, while anti-interferon-gamma (IFN-γ), interleukin-17 (IL-17), and forkhead box P3 (FOXP3) antibodies were used for CD4+ T cell subsets. Results: Of the 47 obese children, 11 were female. Children with MS had significantly higher levels of serum insulin (34.8±13.8 vs. 16.4±6.3 µU/mL, p<0.001) and homeostasis model assessment of insulin resistance (8.9±4.1 vs. 3.9±1.5, p<0.001) than children without MS. Children with MS revealed significantly higher frequencies of IL-7Rαlow CD8+ T cells (60.1±19.1% vs. 48.4±11.5%, p=0.047) and IL-7RαlowCX3CR1+ CD8+ T cells (53.8±20.1% vs. 41.5±11.9%, p=0.036) than children without MS. As the serum triglyceride levels increased, the frequency of IL-7RαlowCX3CR1+ and IL-7RαhighCX3CR1- CD8+ T cells increased and decreased, respectively (r=0.335, p=0.014 and r=-0.350, p=0.010, respectively), in 47 children. However, no CD4+ T cell subset parameters were significantly different between children with and without MS. Conclusion: In obese children with MS, the changes in immunity due to changes in EM CD8+ T cells might be related to the morbidity of obesity.

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.

Parabiosis and Blood Exchange Techniques in Aging Research (개체병렬결합(parabiosis)실험모델과 혈액교환을 이용한 노화(aging)연구 분석)

  • Kyung Tae Chung
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.208-215
    • /
    • 2023
  • In recent decades, the field of aging research has progressed from the genetic and cellular levels to in vivo models of blood exchange. Since genes capable of extending the lifespan in C. elegance have been reported, various potential target molecules have been discovered through genomics, proteomics, metabolomics, and transcriptomics. Accordingly, research on the interactions between target molecules has also been increasing. The parabiosis method, in which two experimental animals are surgically combined, was introduced, and a factor that could reverse the aging phenomenon was discovered using this method. The parabiosis method is used to find more accurate and effective aging-reversal factors that could exist in young blood. As more new evidence has been revealed, the parabiosis method has established a new paradigm for aging research. Moreover, a device capable of exchanging blood elaborately in laboratory animals was published in 2022 and presented new results necessary for aging reversal. Since GDF11, was reported, many other anti-aging candidates that are soluble factors in blood, such as β2m, TIMP2, VCAM1, Gpld1, and clusterin, have been discovered. In addition, mcicroglia cells and neuroinflammation have been directly proven to be aging factors. These latest research results were obtained by parabiosis, the newly designed device for plasmapheresis, and injecting young blood or conditioned blood methods. In this review, we discuss the latest research results using the device and young blood administration in old mice.

Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development

  • Zhaohua Liu;Xiuwen Tan;Qing Jin;Wangtao Zhan;Gang Liu;Xukui Cui;Jianying Wang;Xianfeng Meng;Rongsheng Zhu;Ke Wang
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.982-992
    • /
    • 2024
  • Objective: Jining Grey goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey goat and Boer goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding of goats.

Identification of relevant differential genes to the divergent development of pectoral muscle in ducks by transcriptomic analysis

  • Fan Li;Zongliang He;Yinglin Lu;Jing Zhou;Heng Cao;Xingyu Zhang;Hongjie Ji;Kunpeng Lv;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1345-1354
    • /
    • 2024
  • Objective: The objective of this study was to identify candidate genes that play important roles in skeletal muscle development in ducks. Methods: In this study, we investigated the transcriptional sequencing of embryonic pectoral muscles from two specialized lines: Liancheng white ducks (female) and Cherry valley ducks (male) hybrid Line A (LCA) and Line C (LCC) ducks. In addition, prediction of target genes for the differentially expressed mRNAs was conducted and the enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes signaling pathways were further analyzed. Finally, a protein-to-protein interaction network was analyzed by using the target genes to gain insights into their potential functional association. Results: A total of 1,428 differentially expressed genes (DEGs) with 762 being up-regulated genes and 666 being down-regulated genes in pectoral muscle of LCA and LCC ducks identified by RNA-seq (p<0.05). Meanwhile, 23 GO terms in the down-regulated genes and 75 GO terms in up-regulated genes were significantly enriched (p<0.05). Furthermore, the top 5 most enriched pathways were ECM-receptor interaction, fatty acid degradation, pyruvate degradation, PPAR signaling pathway, and glycolysis/gluconeogenesis. Finally, the candidate genes including integrin b3 (Itgb3), pyruvate kinase M1/2 (Pkm), insulin-like growth factor 1 (Igf1), glucose-6-phosphate isomerase (Gpi), GABA type A receptor-associated protein-like 1 (Gabarapl1), and thyroid hormone receptor beta (Thrb) showed the most expression difference, and then were selected to verification by quantitative real-time polymerase chain reaction (qRT-PCR). The result of qRT-PCR was consistent with that of transcriptome sequencing. Conclusion: This study provided information of molecular mechanisms underlying the developmental differences in skeletal muscles between specialized duck lines.