• 제목/요약/키워드: Transcriptome assembly

검색결과 39건 처리시간 0.027초

Transcriptome analysis of internal and external stress mechanisms in Aster spathulifolius Maxim.

  • Sivagami, Jean Claude;Park, SeonJoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.35-35
    • /
    • 2019
  • Aster spathulifolius Maxim. is belongs to the Asteraceae family which is distributed only in Korea and Japan. It is recognize as a traditionally medicinal plants and economically valuable in ornamental field. However, among the Asteraceae family, the Aster genus, which is lacks in genomic resources and information of molecular function. Therefore, we used high throughput RNA-sequencing transcriptome data of the A. spathulifolius to know molecular level function. DeNovo assembly produced 98,660 unigene with N50 value 1126 bp. Unigenes was performed to analyses the functional annotation against NCBI database like plant database of nucleotide (Nt) and non-redundant protein (Nr), Pfam, Uniprot, KEGG and Transcriptional factor (TF). In addition, Distribution of SSR markers also analyzed for future perfectives. Further, Comparing with other two Asteraceae family species like, Karelinia caspica and Chrysanthemum morifolium to the A. spathulifolius shows the number of gene that regulated in internal and external stress respectively salt-tolerant and heat and drought stress to understand the molecular basis related to the different environments stress.

  • PDF

Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Park, Hyun-Seung;Jang, Woojong;Lee, Yun Sun;Choi, Beom-Soon;Nah, Gyoung Ju;Kim, Do-Soon;Natesan, Senthil;Sun, Chao;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.278-288
    • /
    • 2014
  • Background: Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. Methods: RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. Results: Assemblies were generated from ~85 million and ~77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases.We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. Conclusion: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.

NA-Seq를 이용한 제주산 메밀의 발아초기 전사체 프로파일 분석 (Transcriptomic Profile Analysis of Jeju Buckwheat using RNA-Seq Data)

  • 한송이;정성진;오대주;정용환;김찬식;김재훈
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.537-545
    • /
    • 2018
  • 본 연구에서는 메밀의 발아초기에 발현되는 전사체의 다양한 정보 수집을 위해 양절메밀과 대관 3-3호의 RNA를 추출하여 전사체 분석을 수행하였다. 제주산 양절메밀과 대관3-3호의 종자 및 발아 후 12, 24, 36시간별로 total RNA를 추출하고, llumina Hiseq 2000 플랫폼을 사용하여 시퀀싱 하였다. SolexaQA package의 DynamicTrim과 LengthsORT 프로그램으로 이용하여 raw 데이터 분석을 실시한 후, 어셈블리(assembly)와 annotation을 수행하였다. RNA-seq raw 데이터로부터 약 84.2%, 81.5%에 해당하는 16.5Gb, 16.2Gb의 transcriptome 데이터를 확보하였다. 47Mb에 해당하는 43,494개의 대표적인 전사체(representative transcripts)를 확보하였고, 그 중에서 annotation DB와 서열 유사도를 갖는 서열은 23,165개로 확인되었다. 메밀의 representative transcripts 유전자의 유전자 온톨로지(gene ontology) 분석결과, biological process는 metabolic process (49.49%)에서, cellular components는 cell (46.12%)에서, molecular function은 catalyltic activity (80.43%)에서 유전자가 많이 분포되어 있는 것을 확인하였다. 종자의 발아에 관련된 gibberellin receptor GID1C의 경우에는 양절메밀, 대관 3-3호의 발현양이 모두 시간이 지남에 따라 증가되는 것을 확인할 수 있었으며, gibberellin 20-oxidase1의 경우에는 양절메밀에서는 발아 후 12 시간이내에 증가되었으나, 대관 3-3호에서는 36시간까지 유전자 발현양 증가하는 것을 확인할 수 있었다. 이러한 제주산 메밀의 발아초기 단계별 전사체 분석 데이터는 종간의 기능적, 형태학적 차이를 일으키는 메커니즘 규명에 도움을 줄 것으로 사료된다.

De novo Assembly and Analysis of Amur Sturgeon (Acipenser schrenckii) Transcriptome in Response to Mycobacterium Marinum Infection to Identify Putative Genes Involved in Immunity

  • Zhang, Qianqian;Wang, Xiehao;Zhang, Defeng;Long, Meng;Wu, Zhenbing;Feng, Yuqing;Hao, Jingwen;Wang, Shuyi;Liao, Qian;Li, Aihua
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1324-1334
    • /
    • 2019
  • Fish mycobacteriosis is a common bacterial disease in many species of freshwater and marine fish and has caused severe loss of fish production. Mycobacterium marinum has been the most prevalent pathogen observed in several outbreaks of mycobacteriosis of farmed sturgeons in China. However, the immune responses and pathology of sturgeons in mycobacterial infection are rarely studied. Therefore, we used the Illumina RNA-seq method to analyze the transcriptome profile of Acipenser schrenckii challenged with Mycobacterium marinum. To begin, 168,220 non-redundant contigs were acquired from the infection and control groups, and among these, 33,225 contigs have acquired annotations. A total of 4,043 differently expressed (DE) contigs between the two groups were identified, and among these, 2479 were up-regulated and 1564 were down-regulated in the infected fish. A total of 1,340 DE contigs with acquired annotations in KEGG were enriched for 124 pathways including the TNF signaling pathway, and the Toll-like receptor signaling pathway. The roles of DE genes involved in significant pathways and other processes were discussed. The 2,209 DE contigs that have yet to acquire proper annotation may represent candidate genes associated with infection in sturgeons and are expected to serve as immunogenetic resources for further study. To our best knowledge, this is the first transcriptome study on sturgeons under bacterial infection.

Blood transcriptome resources of chinstrap (Pygoscelis antarcticus) and gentoo (Pygoscelis papua) penguins from the South Shetland Islands, Antarctica

  • Kim, Bo-Mi;Jeong, Jihye;Jo, Euna;Ahn, Do-Hwan;Kim, Jeong-Hoon;Rhee, Jae-Sung;Park, Hyun
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • The chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) penguins are distributed throughout Antarctica and the sub-Antarctic islands. In this study, high-quality de novo assemblies of blood transcriptomes from these penguins were generated using the Illumina MiSeq platform. A total of 22.2 and 21.8 raw reads were obtained from chinstrap and gentoo penguins, respectively. These reads were assembled using the Oases assembly platform and resulted in 26,036 and 21,854 contigs with N50 values of 929 and 933 base pairs, respectively. Functional gene annotations through pathway analyses of the Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were performed for each blood transcriptome, resulting in a similar compositional order between the two transcriptomes. Ortholog comparisons with previously published transcriptomes from the $Ad{\acute{e}}lie$ (P. adeliae) and emperor (Aptenodytes forsteri) penguins revealed that a high proportion of the four penguins' transcriptomes had significant sequence homology. Because blood and tissues of penguins have been used to monitor pollution in Antarctica, immune parameters in blood could be important indicators for understanding the health status of penguins and other Antarctic animals. In the blood transcriptomes, KEGG analyses detected many essential genes involved in the major innate immunity pathways, which are key metabolic pathways for maintaining homeostasis against exogenous infections or toxins. Blood transcriptome studies such as this may be useful for checking the immune and health status of penguins without sacrifice.

RNA-seq을 이용한 참당귀의 전사체 분석과 꽃 색 관련 유전자 분석 (Transcriptome and Flower Color Related Gene Analysis in Angelica gigas Nakai Using RNA-Seq)

  • 김남수;정대희;박홍우;박윤미;전권석;김만조
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.73-73
    • /
    • 2019
  • Angelica gigas Nakai (Korean danggui), a member of the Umbelliferae family, is a Korean traditional medicinal plant whose roots have been used for treating gynecological diseases. Transcriptomics is the study of the transcriptome, which is the complete set of RNA transcripts that are produced by the genome, using high-throughput methods, such as microarray analysis. In this study, transcriptome analysis of A.gigas Nakai was carried out. Transcriptome sequencing and assembly was carried out by using Illumina Hiseq 2500, Velvet and Oases. A total of 109,591,555 clean reads of A. gigas Nakai was obtained after trimming adaptors. The obtained reads were assembled with an average length of 1,154 bp, a maximum length of 13,166 bp, a minimum length of 200 pb, and N50 of 1,635 bp. Functional annotation and classification was performed using NCBI NR, InterprotScan, KOG, KEGG and GO. Candidate genes for phenylpropanoid biosynthesis were obtanied from A.gigas transcriptome and the genes and its proteins were confirmed through the NCBI homology BLAST searches, revealing high identity with other othologous genes and proteins from various plants pecies. In RNA sequencing analysis using an Illumina Next-Seq2500 sequencer, we identified a total 94,930 transcripts and annotated 71,281 transcripts, which provide basic information for further research in A.gigas Nakai. Our transcriptome data reveal that several differentially expressed genes related to flower color in A.gigas Nakai. The results of this research provide comprehensive information on the A.gigas Nakai genome and enhance our understanding of the flower color related gene pathways in this plant.

  • PDF

Transcriptome Analysis of the Barley-Rhynchosporium secalis Interaction

  • Al-Daoude, Antonious;Shoaib, Amina;Al-Shehadah, Eyad;Jawhar, Mohammad;Arabi, Mohammad Imad Eddin
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.425-431
    • /
    • 2014
  • Leaf scald caused by the infection of Rhynchosporium secalis, is a worldwide crop disease resulting in significant loss of barley yield. In this study, a systematic sequencing of expressed sequence tags (ESTs) was chosen to obtain a global picture of the assembly of genes involved in pathogenesis. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP) display of complementary DNA (cDNA) was utilized. Transcriptional changes of 140 ESTs were observed, of which 19 have no previously described function. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding classical pathogenesis-related (PR) or genes that play a role in the signal transduction pathway. The expression analyses by a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed that Rar1 and Rpg4 are defense inducible genes, and were consistent with the cDNA-AFLP data in their expression patterns. Hence, the here presented transcriptomic approach provides novel global catalogue of genes not currently represented in the EST databases.

Comprehensive Expression Analysis of Triterpenoid Biosynthesis Genes Using Pac-Bio Sequencing and rnaSPAdes assembly in Codonopsis lanceolata

  • Ji-Nam Kang;Si Myung Lee;Mi-Hwa Choi;Chang-Kug Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.253-253
    • /
    • 2022
  • Codonopsis lanceolata (C. lanceolata) has been widely used in East Asia as a traditional medicine to treat various diseases such as bronchitis, convulsions, cough, obesity, and hepatitis. C. lanceolata belonging to Campanulaceae contains bioactive compounds such as polyphenols, saponins, and steroids. However, despite the pharmacological significance of C. lanceolata, the genetic information of this plant is limited and there are few studies of its transcriptome. In this study, we constructed a unigene set of C. lanceolata using Pac-Bio sequencing. Furthermore, the reads generated from Pac-bio and Illumina sequencing were mixed and assembled using rnaSPAdes. All genes involved in the triterpenoid pathway, a major bioactive compounds of C. lanceolata, were searched from the two unigene sets and the expression profiles of these genes were analyzed. The results showed that lupeol, beta-amyrin, and dammarenediol synthesis genes were activated in the leaves and roots of C. lanceolata. In particular, the expression of genes related to lupeol synthesis was relatively high, suggesting that the main triterpenoid of C. lanceolata is lupeol. Transcriptome studies related to lupeol synthesis in C. lanceolata have been rarely reported. Lupeol has been reported to have pharmacological effects such as anti-inflammatory, anti-cancer, and anti-bacterial. This study suggests the importance of C. lanceolata as a lupeol producing plant.

  • PDF

Transcriptome analysis of a medicinal plant, Pistacia chinensis

  • Choi, Ki-Young;Park, Duck Hwan;Seong, Eun-Soo;Lee, Sang Woo;Hang, Jin;Yi, Li Wan;Kim, Jong-Hwa;Na, Jong-Kuk
    • Journal of Plant Biotechnology
    • /
    • 제46권4호
    • /
    • pp.274-281
    • /
    • 2019
  • Pistacia chinensis Bunge has not only been used as a medicinal plant to treat various illnesses but its young shoots and leaves have also been used as vegetables. In addition, P. chinensis is used as a rootstock for Pistacia vera (pistachio). Here, the transcriptome of P. chinensis was sequenced to enrich genetic resources and identify secondary metabolite biosynthetic pathways using Illumina RNA-seq methods. De novo assembly resulted in 18,524 unigenes with an average length of 873 bp from 19 million RNA-seq reads. A Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation tool assigned KO (KEGG orthology) numbers to 6,553 (36.2%) unigenes, among which 4,061 unigenes were mapped into 391 different metabolic pathways. For terpenoid backbone and carotenoid biosynthesis pathways, 44 and 22 unigenes encode enzymes corresponding to 30 and 16 entries, respectively. Twenty-two unigenes encode proteins for 16 entries of the carotenoid biosynthesis pathway. As for the phenylpropanoid and flavonoid biosynthesis pathways, 63 and 24 unigenes were homologous to 17 and 14 entry proteins, respectively. Mining of simple sequence repeat identified 2,599 simple sequence repeats from P. chinensis unigenes. The results of the present study provide a valuable resource for in-depth studies on comparative and functional genomics to unravel the underlying mechanisms of the medicinal properties of Pistacia L.

Transcriptome analysis of Panax ginseng response to high light stress

  • Jung, Je Hyeong;Kim, Ho-Youn;Kim, Hyoung Seok;Jung, Sang Hoon
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.312-320
    • /
    • 2020
  • Background: Ginseng (Panax ginseng Meyer) is an essential source of pharmaceuticals and functional foods. Ginseng productivity has been compromised by high light (HL) stress, which is one of the major abiotic stresses during the ginseng cultivation period. The genetic improvement for HL tolerance in ginseng could be facilitated by analyzing its genetic and molecular characteristics associated with HL stress. Methods: Genome-wide analysis of gene expression was performed under HL and recovery conditions in 1-year-old Korean ginseng (P. ginseng cv. Chunpoong) using the Illumina HiSeq platform. After de novo assembly of transcripts, we performed expression profiling and identified differentially expressed genes (DEGs). Furthermore, putative functions of identified DEGs were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Results: A total of 438 highly expressed DEGs in response to HL stress were identified and selected from 29,184 representative transcripts. Among the DEGs, 326 and 114 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, most upregulated and a significant number of downregulated transcripts were related to stress responses and cellular metabolic processes, respectively. Conclusion: Transcriptome profiling could be a strategy to comprehensively elucidate the genetic and molecular mechanisms of HL tolerance and susceptibility. This study would provide a foundation for developing breeding and metabolic engineering strategies to improve the environmental stress tolerance of ginseng.