• 제목/요약/키워드: Transcriptional co-activator

검색결과 29건 처리시간 0.025초

A Simple ELISA for Screening Ligands of Peroxisome Proliferator-activated Receptor γ

  • Cho, Min-Chul;Lee, Hae-Sook;Kim, Jae-Hwa;Choe, Yong-Kyung;Hong, Jin-Tae;Paik, Sang-Gi;Yoon, Do-Young
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.207-213
    • /
    • 2003
  • Peroxisome proliferator-activated receptors (PPARs) are orphan nuclear hormone receptors that are known to control the expression of genes that are involved in lipid homeostasis and energy balance. PPARs activate gene transcription in response to a variety of compounds, including hypolipidemic drugs. Most of these compounds have high affinity to the ligand-binding domain (LBD) of PPARs and cause a conformational change within PPARs. As a result, the receptor is converted to an activated mode that promotes the recruitment fo co-activators such as the steroid receptor co-activator-1 (SRC-1). Based on the activation mechanism of PPARs (the ligand binding to $PPAR{\gamma}$ induces interactions of the receptor with transcriptional co-activators), we performed Western blot and ELISA. These showed that the indomethacin, a $PPAR{\gamma}$ ligand, increased the binding between $PPAR{\gamma}$ and SRC-1 in a ligand dose-dependent manner. These results suggested that the in vitro conformational change of $PPAR{\gamma}$ by ligands was also induced, and increased the levels of the ligand-dependent interaction with SRC-1. Collectively, we developed a novel and useful ELISA system for the mass screening of $PPAR{\gamma}$ ligands. This screening system (based on the interaction between $PPAR{\gamma}$ and SRC-1) may be a promising system in the development of drugs for metabolic disorders.

CK2 phosphorylates AP-2α and increases its transcriptional activity

  • Ren, Kaiqun;Xiang, Shuanglin;He, Fangli;Zhang, Wenfeng;Ding, Xiaofeng;Wu, Yanyang;Yang, Liping;Zhou, Jianlin;Gao, Xiang;Zhang, Jian
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.490-495
    • /
    • 2011
  • Transcription factor AP-$2{\alpha}$ involves in the process of mammalian embryonic development and tumorigenesis. Many studies have shown that AP-$2{\alpha}$ functions in association with other interacting proteins. In a two-hybrid screening, the regulatory subunit ${\beta}$ of protein casein kinase 2 ($CK2{\beta}$) was identified as an interacting protein of AP-$2{\alpha}$; we confirmed this interaction using in-vitro GST pull-down and in-vivo co-immunoprecipitation assays; in an endogenous co-immunoprecipitation experiment, we further found the catalytic subunit ${\alpha}$ of protein casein kinase 2 ($CK2{\alpha}$) also exists in the complex. Phosphorylation analysis revealed that AP-$2{\alpha}$ was phosphorylated by CK2 kinase majorly at the site of Ser429, and such phosphorylation could be blocked by CK2 specific inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in a dose-dependent manner. Luciferase assays demonstrated that both $CK2{\alpha}$ and $CK2{\beta}$ enhanced the transcription activity of AP-$2{\alpha}$; moreover, $CK2{\beta}$ increased the stability of AP-$2{\alpha}$. Our data suggest a novel cellular function of CK-2 as a transcriptional co-activator of AP-$2{\alpha}$.

전암성 폐병변 및 편평상피세포폐암 조직에서 CBP(cAMP-responsive Ele-ment Binding Protein) 전사 공동 활성인자의 면역조직화학적 발현양상의 비교 (Comparison of Immunohistochemical Expression of CBP(cAMP-responsive Element Binding Protein) Transcriptional Co-activator between Premalignant Lesions and Squamous Cell Carcinomas in the Lungs)

  • 신종욱;김진수;김미경
    • Tuberculosis and Respiratory Diseases
    • /
    • 제63권2호
    • /
    • pp.165-172
    • /
    • 2007
  • 폐암의 발생은 여러 많은 유전자의 변화가 축적되어 나타나는 일련의 과정에 의한다. 세포 내 전사 조절 인자의 하나인 CBP는 폐를 포함한 인체 내 여러 조직에서 상피세포의 분화 및 증식에 중요한 역할을 담당하며, 유전자들에서 전사조절인자로서 세포의 성장에 관여하며 발암 과정에서도 중요할 것으로 기대된다. 이에 아직까지 폐암에서 CBP에 대한 연구가 확정된 바가 없어, 폐의 전암성 병변(상피 화생 20예, 이형성증 40예) 및 편평상피세포폐암 60예를 대상으로 하여 CBP의 발현정도를 면역화학적 방법으로 비교 분석하여 다음과 같은 결과를 얻었다. 1) 화생성 병변(7예; 35%)에 비해 이형성 병변(26례; 65%)이나 편평세포암종(42례; 70%)에서 CBP의 발현이 유의하게 높았다(p<0.05). 2) 이형성 병변의 경우, 경도의 이형성 병변(20예 중 10예; 50%)보다 고도의 이형성 병변(20예 중 16예; 80%)에서 높은 CBP의 발현율을 보였다(p<0.01). 3) 편평세포암의 분화도별로 살펴보았을 때, 고분화암에서 95%(20예 중 19예), 중등도 분화암에서 85%(20예 중 17예), 저분화 암에서는 30%(20예 중 6예)의 발현율을 보였다(p<0.05). 이상과 같은 결과를 볼 때, CBP는 폐 조직에서 정상 기관지 상피 세포가 전암성 병변으로 변하거나 전암성 병변이 암으로 진행하는 과정에서 중요한 역할을 하는 것으로 보이며, 세포가 암으로의 발전할 수 있는 잠재성을 가늠하는 표지자가 될 수 있을 것으로 보인다.

The Histone Demethylase PHF2 Promotes Fat Cell Differentiation as an Epigenetic Activator of Both C/EBPα and C/EBPδ

  • Lee, Kyoung-Hwa;Ju, Uk-Il;Song, Jung-Yup;Chun, Yang-Sook
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.734-741
    • /
    • 2014
  • Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)${\alpha}$ and C/EBP${\delta}$ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.

SCYL1BP1 has Tumor-suppressive Functions in Human Lung Squamous Carcinoma Cells by Regulating Degradation of MDM2

  • Yang, Zhi-Ping;Xie, Yong-Hong;Ling, Dan-Yan;Li, Jin-Rui;Jiang, Jin;Fan, Yao-Hua;Zheng, Jia-Lian;Wu, Wan-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7467-7471
    • /
    • 2014
  • SCY1-like 1-binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is very important for the development of human cancer. However, the effects of SCYL1BP1 on human lung squamous carcinoma cell biological behavior remain poorly understood. In this study, we present evidence that SCYL1BP1 can promote the degradation of MDM2 protein and further inhibit the G1/S transition of lung squamous carcinoma cell lines. Functional assays found that reintroduction of SCYL1BP1 into lung squamous carcinoma cell lines significantly inhibited cell proliferation, migration, invasion and tumor formation in nude mice, suggesting strong tumor suppressive function of SCYL1BP1 in lung squamous carcinoma. Taken together, our data suggest that the interaction of SCYL1BP1/MDM2 could accelerate MDM2 degradation, and may function as an important tumor suppressor in lung squamous carcinomas.

Molecular adaptation of the CREB-Binding Protein for aquatic living in cetaceans

  • Jeong, Jae-Yeon;Chung, Ok Sung;Ko, Young-Joon;Lee, Kyeong Won;Cho, Yun Sung;Bhak, Jong;Yim, Hyung-Soon;Lee, Jung-Hyun
    • 한국해양바이오학회지
    • /
    • 제6권2호
    • /
    • pp.102-109
    • /
    • 2014
  • Cetaceans (whales, dolphins, and porpoises) are aquatic mammals that experienced drastic changes during the transition from terrestrial to aquatic environment. Morphological changes include streamlined body, alterations in the face, transformation of the forelimbs into flippers, disappearance of the hindlimbs and the acquisition of flukes on the tail. For a prolonged diving, cetaceans acquired hypoxia-resistance by developing various anatomical and physiological changes. However, molecular mechanisms underlying these adaptations are still limited. CREB-binding protein (CREBBP) is a transcriptional co-activator critical for embryonic development, growth control, metabolic homeostasis and responses to hypoxia. Natural selection analysis of five cetacean CREBBPs compared with those from 15 terrestrial relatives revealed strong purifying selection, supporting the importance of its role in mammals. However, prediction for amino acid changes that elicit functional difference of CREBBP identified three cetacean specific changes localized within a region required for interaction with SRCAP and in proximal regions to KIX domain of CREBBP. Mutations in CREBBP or SRCAP are known to cause craniofacial and skeletal defects in human, and KIX domain of CREBBP serves as a docking site for transcription factors including c-Myb, an essential regulator of haematopoiesis. In these respects, our study provides interesting insights into the functional adaptation of cetacean CREBBP for aquatic lifestyle.

상근피의 Hippo 신호전달 경로 활성화를 통한 YAP 억제 효능 (Root Bark of Morus Alba Suppresses the YAP Activity through Activation of Classical Hippo Signaling Pathway)

  • 조유나;최다빈;정한솔
    • 동의생리병리학회지
    • /
    • 제33권4호
    • /
    • pp.191-197
    • /
    • 2019
  • This study aims to evaluate the effects of the root bark of Morus alba (RMA) on the regulation of the Hippo-YAP pathway. Hippo-YAP signaling is a critical regulator in controlling organ size and tissue homeostasis. Hippo, the serine/threonine kinase phosphorylate the LATS. Phosphorylated LATS then phosphorylates and inactivates the YAP and TAZ, which are two closely related transcriptional co-activator. Here we report RMA activates the Hippo signaling, thereby inhibits the YAP/TAZ activity. First, we examine the cytotoxic effects of RMA by MTT assay. RMA was cytotoxic at concentrations higher than $50{\mu}g/ml$ in HEK293A cells. The reporter gene assay was performed to measure the activity of TEAD, a key transcription factor that controls cell growth and proliferation. RMA significantly suppressed the luciferase activity. By phos-taq gel shift assay, and western blotting, we showed that RMA enhanced the phosphorylation of YAP in wild type cells, but not in LATS1/2 knock out cells, which means RMA activates classical Hippo pathway. RMA induced the cytoplasmic sequestration of YAP. RMA also suppressed the mRNA expression of CTGF and CYR61; the two major YAP dependent genes. Taken together, RMA is considered to be a good candidate for proliferative disease such as cancer, by facilitating cell death through activating the Hippo signaling pathway.

Tricho-dento-osseous Syndrome Mutant Dlx3 Shows Lower Transactivation Potential but Has Longer Half-life than Wild-type Dlx3

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제32권4호
    • /
    • pp.119-125
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to play a role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM #190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. The molecular mechanisms that explain the phenotypic characteristics of TDO syndrome have not been clearly determined. In this study, we examined phenotypic characteristics of wild type DLX3(wtDlx3) and 4-BP DEL DLX3 (TDO mtDlx3) in C2C12 cells. To investigate how wtDlx3 and TDO mtDlx3 differentially regulate osteoblastic differentiation, reporter assays were performed by using luciferase reporters containing the promoters of alkaline phosphatase, bone sialoprotein or osteocalcin. Both wtDlx3 and TDO mtDlx3 enhanced significantly all the reporter activities but the effect of mtDlx3 was much weaker than that of wtDlx3. In spite of these differences in reporter activity, electrophoretic mobility shift assay showed that both wtDlx3 and TDO mtDlx3 formed similar amounts of DNA binding complexes with Dlx3 binding consensus sequence or with ALP promoter oligonucleotide bearing the Dlx3 binding core sequence. TDO mtDlx3 exhibits a longer half-life than wtDlx3 and it corresponds to PESTfind analysis result showing that potential PEST sequence was missed in carboxy terminal of TDO mtDlx3. In addition, co-immunoprecipitation demonstrated that TDO mtDlx3 binds to Msx2 more strongly than wtDlx3. Taken together, though TDO mtDlx3 acted as a weaker transcriptional activator than wtDlx3 in osteoblastic cells, there is possibility that during in vivo osteoblast differentiation TDO mtDlx3 may antagonize transcriptional repressor activity of Msx2 more effectively and for longer period than wtDlx3, resulting in enhancement of osteoblast differentiation.

조직.기관의 분화와 유전자 발현의 조절, 최근의 진보 (Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression)

  • Harn, Chang-Yawl
    • 식물조직배양학회지
    • /
    • 제24권1호
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF