• 제목/요약/키워드: Transcription factor binding site

검색결과 87건 처리시간 0.024초

No Relevance of NF-${\kappa}B$ in the Transcriptional Regulation of Human Nanog Gene in Embryonic Carcinoma Cells

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2011
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self renewal requires many factors such as Oct4, Sox2, FoxD3, and Nanog. NF-${\kappa}B$ is a transcription factor involved in many biological activities. Expression and activity of NF-${\kappa}B$ increase upon differentiation of ES cells. Reportedly, Nanog protein directly binds to NF-${\kappa}B$ protein and inhibits its activity in ES cells. Here, we found a potential binding site of NF-${\kappa}B$ in the human Nanog promoter and postulated that NF-${\kappa}B$ protein may regulate expression of the Nanog gene. We used human embryonic carcinoma (EC) cells as a model system of ES cells and confirmed decrease of Nanog and increase of NF-${\kappa}B$ upon differentiation induced by retinoic acid. Although deletion analysis on the DNA fragment including NF-${\kappa}B$ binding site suggested involvement of NF-${\kappa}B$ in the negative regulation of the promoter, site-directed mutation of NF-${\kappa}B$ binding site had no effect on the Nanog promoter activity. Furthermore, no direct association of NF-${\kappa}B$ with the Nanog promoter was detected during differentiation. Therefore, we conclude that NF-${\kappa}B$ protein may not be involved in transcriptional regulation of Nanog gene expression in EC cells and possibly in ES cells.

Rhizobium meliloti와 R. leguminosarum 의 dctA 프로모터에서 DctD 및 NtrC가 중재된 초 in vitro 전사활성 (DctD- or NtrC-mediated in vitro Transcriptional Activation from Rhizobium meliloti and R. leguminosarum dctA Promoter)

  • 최상기;이준행
    • 한국미생물·생명공학회지
    • /
    • 제32권2호
    • /
    • pp.190-194
    • /
    • 2004
  • The gene product of dctD (DctD) activates transcription from the dctA promoter regulatory region by the $\sigma^{54}$ -holoenzyme form ofRNA polymerase ($E\sigma^{54}$ ) in Rhizobium meliloti and R. leguminosarum. The Escherichia coli integration host factor (IHF) stimulated DctD-mediated activation from the dctA promoter regulatory region of R. leguminosarum but not R. meliloti. In the absence of UAS, IHF inhibited DctD-mediated activation from both of these promoter regulatory regions. IHF also inhibited activation from R. leguminosarum dctA by nitrogen regulatory protein C (NtrC), another activator of $E\sigma^{54}$ but not by one which lacks a specific binding site in this promoter regulatory region. IHF, however, stimulated NtrC-mediated activation from the R. meliloti dctA promoter. Upon removal of the UAS, IHF inhibited NtrC-mediated transcription activation from the R. meliloti dctA promoter regulatory region. These data suggest that IHF likely faciliates productive contacts between the activators NtrC or DctD and $E\sigma^{54}$ to stimulate activation from dctA promoter.

쥐의 insulin-like growth tractor리 유전자 발현의 대사조절기전에 관안 연구 (Metabolic Regulation of Insulin-like Growth Factor-1 Expression)

  • 안미라
    • KSBB Journal
    • /
    • 제17권3호
    • /
    • pp.283-289
    • /
    • 2002
  • Insulin-like growth factor-I(IGF-I)은 성장호르몬의 여러 가지 성정촉진 작용을 매개하는 분열 유발성 폴리펩티드이며, 조직의 수선과 재생, 창상치유 및 골대사와 같은 과정들에서 중요한 역할을 하는 것으로 알려져 있고, 비교적 여러 조직에서 발현되고 있는 IGF-I 유전자의 전사조절에 대한 정확한 분자적 기전과 호르몬 및 대사 상태가 그것을 어떻게 조절하는지 아직 밝혀져 있지 않다. 쥐를 절삭시키므로써 대사 상태를 변조시켰을 때, 간 조직내 IGF-I mRNA의 발현에 미치는 절식의 영향을 살펴보기 위하여 solution hybridizatioon/RNase protection 방법으로 분석 하였다. IGF-I의 exon 1 및 exon 2에 의하여 encode된 tran-scripts 모두가 감소된 결과를 얻었고, 이러한 감소는 전사 수준에서 일어난 것으로 nuclear run-on 분석에 의하여 확인하였다. 또한 절식시킨 쥐에서 IGF-I mRNA의 양을 조절하는 cia-acting elements를 IGF-I 유전자의 5'-flanking 지역과 exon 1과 econ 2에서 밝히고자 절식시킨 쥐의 신선한 간조직에서 핵 추출물을 얻어 IGF-I의 여러 가지 DNA fragments와 반응시켜 DNase I protection 분석을 한 결과, IGF-I 유전자의 주요한 전사 개 시점으로부터 downstream에 있는 sequences가 절식으로 변조시킨 대사상태에서 IGF-I의 발현 조절에 중요하며 이곳에는 전사인자인 C/EBP family의 isoform들을 포함한 간조직에 풍부하게 존재하는 여러 전사인자들이 결합할 것으로 제안하였다.

Identification and Functional Characterization of Novel Genetic Variations in the OCTN1 Promoter

  • Park, Hyo Jin;Choi, Ji Ha
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.169-175
    • /
    • 2014
  • Human organic cation/carnitine transporter 1 (OCTN1) plays an important role in the transport of drugs and endogenous substances. It is known that a missense variant of OCTN1 is significantly associated with Crohn's disease susceptibility. This study was performed to identify genetic variants of the OCTN1 promoter in Korean individuals and to determine their functional effects. First, the promoter region of OCTN1 was directly sequenced using genomic DNA samples from 48 healthy Koreans. OCTN1 promoter activity was then measured using a luciferase reporter assay in HCT-116 cells. Seven variants of the OCTN1 promoter were identified, two of which were novel. There were also four major OCTN1 promoter haplotypes. Three haplotypes (H1, H3, and H4) showed decreased transcriptional activity, which was reduced by 22.9%, 23.0%, and 44.6%, respectively (p<0.001), compared with the reference haplotype (H2). Transcription factor binding site analyses and gel shift assays revealed that NF-Y could bind to the region containing g.-1875T>A, a variant present in H3, and that the binding affinity of NF-Y was higher for the g.-1875T allele than for the g.-1875A allele. NF-Y could also repress OCTN1 transcription. These data suggest that three OCTN1 promoter haplotypes could regulate OCTN1 transcription. To our knowledge, this is the first study to identify functional variants of the OCTN1 promoter.

WNT11 is a direct target of early growth response protein 1

  • Kim, JuHwan;Jung, Euitaek;Ahn, Sung Shin;Yeo, Hyunjin;Lee, Jeong Yeon;Seo, Jeong Kon;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.628-633
    • /
    • 2020
  • WNT11 is a member of the non-canonical Wnt family and plays a crucial role in tumor progression. However, the regulatory mechanisms underlying WNT11 expression are unclear. Tumor necrosis factor-alpha (TNFα) is a major inflammatory cytokine produced in the tumor microenvironment and contributes to processes associated with tumor progression, such as tumor invasion and metastasis. By using site-directed mutagenesis and introducing a serial deletion in the 5'-regulatory region of WNT11, we observed that TNFα activates the early growth response 1 (EGR1)-binding sequence (EBS) in the proximal region of WNT11 and that the transcription factor EGR1 is necessary for the TNFα-induced transcription of WNT11. EGR1 bound directly to the EBSs within the proximal 5'-regulatory region of WNT11 and ectopic expression of EGR1 stimulated WNT11 promoter activity, whereas the knockdown of EGR1 expression by RNA interference reduced TNFα-induced WNT11 expression in T47D breast cancer cells. We also observed that mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase mediated TNFα-induced transcription of WNT11 via EGR1. Our results suggest that EGR1 directly targets WNT11 in response to TNFα stimulation in breast cancer cells.

조직.기관의 분화와 유전자 발현의 조절, 최근의 진보 (Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression)

  • Harn, Chang-Yawl
    • 식물조직배양학회지
    • /
    • 제24권1호
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향 (Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells)

  • 김기형;박상준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권6호
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Role of $NF-_{{\kappa}B}$ Binding Sites in the Regulation of Inducible Nitric Oxide Synthase by Tyrosine Kinase

  • Ryu, Young-Sue;Hong, Jang-Hee;Lim, Jong-Ho;Bae, So-Hyun;Ahn, Ihn-Sub;Seok, Jeong-Ho;Lee, Jae-Heun;Hur, Gang-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권1호
    • /
    • pp.55-63
    • /
    • 2001
  • In macrophages, lipopolysaccharide (LPS) alone or in combination with $interferon-{\gamma}\;(IFN-{\gamma})$ has been shown to release a nitric oxide (NO) through the increase of the transcription of the inducible nitric oxide synthase (iNOS) gene. To investigate the exact intracellular signaling pathway of the regulation of iNOS gene transcription by LPS plus $IFN-{\gamma},$ the effects of protein tyrosine kinase (PTK) inhibitor and protein kinase C (PKC) inhibitors on NO production, iNOS mRNA expression, nuclear $factor-_{\kappa}B\;(NF-_{\kappa}B)$ binding activity and the promoter activity of iNOS gene containing two $NF-_{\kappa}B$ sites have been examined in a mouse macrophage RAW 264.7 cells. LPS or $IFN-{\gamma}$ stimulated NO production, and their effect was enhanced synergistically by mixture of LPS and $IFN-{\gamma}.$ The PTK inhibitor such as tyrphostin reduced LPS plus $IFN-{\gamma}-induced$ NO production, iNOS mRNA expression and $NF-_{\kappa}B$ binding activity. In contrast, PKC inhibitors such as H-7, Ro-318220 and staurosporine did not show any effect on them. In addition, transfection of RAW 264.7 cells with iNOS promoter linked to a CAT reporter gene revealed that tyrphostin inhibited the iNOS promoter activity through the $NF-_{\kappa}B$ binding site, whereas PKC inhibitors did not. Taken together, these suggest that PTK, but not PKC pathway, is involved in the regulation of the iNOS gene transcription through the $NF-_{\kappa}B$ sites of iNOS promoter in RAW 264.7 macrophages by LPS plus $IFN-{\gamma}$.

  • PDF

미생물에서 돼지 150-kDa Insulin-Like Growth Factor Complex의 Acid-Labile Subunit 발현 (Procaryotic Expression of Porcine Acid-Labile Subunit of the 150-kDa Insulin-like Growth Factor Complex)

  • 이철영;강혜경;문양수
    • Journal of Animal Science and Technology
    • /
    • 제50권2호
    • /
    • pp.177-184
    • /
    • 2008
  • Acid-labile subunit(ALS)는 85-kDa 크기의 당단백질로서 7.5-kDa의 insulin-like growth factor(IGF) 및 40~45-kDa IGF-binding protein-3와 결합하여 150-kDa ternary complex를 형성하는 혈장단백질이다. 선행연구에서 본 연구진은 reverse transcription-polymerase chain reaction(RT-PCR) 방법으로 돼지(porcine) ALS(pALS)의 coding sequence를 합성하여 plasmid vector에 삽입시켜 ‘expression construct’를 제작한 바 있다. 그러나 본 expression construct의 pALS coding sequence에는 PCR error로 추정되는 원인으로 말미암아 2개의 bases에서 mis-sense mutation이 일어난 것이 발견되었다. 본 연구에서는 ‘site-directed mutagenesis’ 방법으로 pALS의 올바른 coding sequence를 합성하여 ‘insert DNA’의 마지막 codon 다음에 ‘His-tag’ sequence가 위치한 pET- 28a(+) plasmid expression vector에 삽입하였다. 본 expression construct는 E. coli BL21(DE3) 세포에서 ‘induction’ 시켰고, 발현된 유전자재조합(recombinant) peptide는 Ni-affinity chromato- graphy로 정제하였다. 이렇게 affinity chro- matography로 정제된 peptide는 SDS-PAGE에서 66kDa 위치에 single band를 나타냄으로써 recombinant pALS의 예상된 질량과 일치하였다. 이상의 결과는 본 연구에서 recombinant pALS peptide가 성공적으로 발현정제되었음을 시사한다.

Transcriptional Regulation of the Schizosaccharomyces pombe Gene Encoding Glutathione S-Transferase I by a Transcription Factor Pap1

  • Kim Hong-Gyum;Kim Byung-Chul;Kim Kyunghoon;Park Eun-Hee;Lim Chang-Jin
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.353-356
    • /
    • 2004
  • In a previous study, a gst gene was isolated from the fission yeast Schizosaccharomyces pombe. This gene was dubbed gstI, and was characterized using the gstI -lacZ fusion plasmid pYSH2000. In this work, four additional fusion plasmids, pYSHSDl, pYSHSD2, pYSHSD3 and pYSHSD4, were constructed, in order to carry (respectively) 770, 551, 358 and 151 bp upstream regions from the translational initiation point. The sequence responsible for induction by aluminum, mercury and hydrogen peroxide was located in the range between -1,088 and -770 bp upstream of the S. pombe gstI gene. The same region was identified to contain the nucleotide sequence responsible for regulation by Papl, and has one puta­tive Papl binding site, TTACGTAT, located in the range between $-954\~-947$ bp upstream of the gstI gene. Negatively acting sequences are located between -1,088 and -151 bp. These findings imply that the Papl protein is involved in basal and inducible transcription of the gstI gene in the fission yeast S. pombe.