• Title/Summary/Keyword: Transaction Level Modeling(TLM)

Search Result 5, Processing Time 0.027 seconds

A Transaction Level Simulator for Performance Analysis of Solid-State Disk (SSD) in PC Environment (PC향 SSD의 성능 분석을 위한 트랜잭션 수준 시뮬레이터)

  • Kim, Dong;Bang, Kwan-Hu;Ha, Seung-Hwan;Chung, Sung-Woo;Chung, Eui-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.57-64
    • /
    • 2008
  • In this paper, we propose a system-level simulator for the performance analysis of a Solid-State Disk (SSD) in PC environment by using TLM (Transaction Level Modeling) method. Our method provides quantitative analysis for a variety of architectural choices of PC system as well as SSD. Also, it drastically reduces the analysis time compared to the conventional RTL (Register Transfer Level) modeling method. To show the effectiveness of the proposed simulator, we performed several explorations of PC architecture as well as SSD. More specifically, we measured the performance impact of the hit rate of a cache buffer which temporarily stores the data from PC. Also, we analyzed the performance variation of SSD for various NAND Flash memories which show different response time with our simulator. These experimental results show that our simulator can be effectively utilized for the architecture exploration of SSD as well as PC.

Establishment of System Level environment to apply SSD to PC (SSD의 PC적용을 위한 시스템 수준의 환경 구축)

  • Kim, Dong;Bang, Kwan-Hu;Chung, Eui-Young
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.561-562
    • /
    • 2008
  • In this paper, we propose a establishment of system level environment to exploit PC system with SSD (Solid State Disk) by using TLM (Transaction Level Modeling) method with SystemC language. The reason why we choose this modeling method is that it eases RTL (Register Transfer Level) modeling burdens and we can accurately estimate the performance about different architectural changes. Also, it provides simulation speed which is relatively faster than RTL modeling method. The baseline architectural platform we implemented showed that SSD's internal transfer time is a dominant factor, so we need to improve that part and it is expected to be a good simulator to measure the system's overall performance by exploiting SSD's internal architectures.

  • PDF

A Multipurpose Design Framework for Hardware-Software Cosimulation of System-on-Chip (시스템-온-칩의 하드웨어-소프트웨어 통합 시뮬레이션을 위한 다목적 설계 프레임워크)

  • Joo, Young-Pyo;Yun, Duk-Young;Kim, Sung-Chan;Ha, Soon-Hoi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.9_10
    • /
    • pp.485-496
    • /
    • 2008
  • As the complexity of SoC (System-on-Chip) design increases dramatically. traditional system performance analysis and verification methods based on RTL (Register Transfer Level) are no more valid for increasing time-to-market pressure. Therefore a new design methodology is desperately required for system verification in early design stages. and hardware software (HW-SW) cosimulation at TLM (Transaction Level Modeling) level has been researched widely for solving this problem. However, most of HW-SW cosimulators support few restricted ion levels only, which makes it difficult to integrate HW-SW cosimulators with different ion levels. To overcome this difficulty, this paper proposes a multipurpose framework for HW SW cosimulation to provide systematic SoC design flow starting from software application design. It supports various design techniques flexibly for each design step, and various HW-SW cosimulators. Since a platform design is possible independently of ion levels and description languages, it allows us to generate simulation models with various ion levels. We verified the proposed framework to model a commercial SoC platform based on an ARM9 processor. It was also proved that this framework could be used for the performance optimization of an MJPEG example up to 44% successfully.

Model Validation of a Fast Ethernet Controller for Performance Evaluation of Network Processors (네트워크 프로세서의 성능 예측을 위한 고속 이더넷 제어기의 상위 레벨 모델 검증)

  • Lee Myeong-jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.92-99
    • /
    • 2005
  • In this paper, we present a high-level design methodology applied on a network system-on-a-chip(SOC) using SystemC. The main target of our approach is to get optimum performance parameters for high network address translation(NAT) throughput. The Fast Ethernet media access controller(MAC) and its direct memory access(DMA) controller are modeled with SystemC in transaction level. They are calibrated through the cycle-based measurement of the operation of the real Verilog register transfer language(RTL). The NAT throughput of the model is within $\pm$10% error compared to the output of the real evaluation board. Simulation speed of the model is more than 100 times laster than the RTL. The validated models are used for intensive architecture exploration to find the performance bottleneck in the NAT router.

A Design Of Physical Layer For OpenCable Copy Protection Module Using SystemC (SystemC를 이용한 OpenCableTM Copy Protection Module의 Physical Layer 설계)

  • Lee, Jung-Ho;Lee, Suk-Yun;Cho, Jun-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.157-160
    • /
    • 2004
  • 본 논문은 미국 차세대 디지털 케이블 방송 표준 규격인 오픈케이블($OpenCable^{TM}$)의 수신제한 모듈인 CableCard의 Physical Layer를 SystemC의 TLM(Transaction Level Modeling)과 RTL(Register-Transfer Level) 모델링 기법으로 설계하였다. 본 논문에서 설계한 CableCard의 Physical Layer는 PCMCIA Interface, Command Inteface 그리고 MPEG-2 TS Interface 로 구성된다. CableCard가 전원이 인가될 때, 카드 초기화를 위하여 동작하는 PCMCIA 인터페이스는 16 비트 PC 카드 SRAM 타입으로 2MByte Memory와 100ns access time으로 동작할 수 있게 설계하였다. PCMCIA 카드 초기화 동작이 완료된 후, CableCard의 기능을 수행하기 위하여 두 개의 논리적 인터페이스가 정의되는데 하나는 MPEG-2 TS 인터페이스이고, 다른 하나는 호스트(셋톱박스)와 모듈 사이의 명령어들을 전달하는 명령어 인터페이스(Command Interface)이다. 명령어 인터페이스(Command Interface)는 셋톱박스의 CPU와 통신하기 위한 1KByte의 Data Channel과 OOB(Out-Of-Band) 통신을 위한 4KByte의 Extended Channel 로 구성되고, 최대 20Mbits/s까지 동작한다. 그리고 MPEG-2 TS는 100Mbits/s까지 동작을 수행할 수 있게 설계하였다. 설계한 코드를 실행한 후, Cadence사의 SimVision을 통해서 타이밍 시뮬레이션을 검증하였다.

  • PDF