• Title/Summary/Keyword: Trans-gene

Search Result 157, Processing Time 0.018 seconds

Elucidation of Function and Isolation of Trans-acting Factors Regulating the Basal Level Expression of Eukaryotic Genes (진핵세포 유전자의 기초대사 발현을 조절하는 trans 작용인자의 기능해석과 새로운 인자의 분리)

  • 황용일
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 1991
  • - I aimed to isolate trans-acting factors involved in the basal expression level of eukaryotic genes. One of the yeast histidine biosynthetic gene, HIS5 was taken as a model for this study. HIS5 gene has a substantial basal level in amino acid rich medium and is derepressed if starved for any single amino acid. The derepression is mediated by cis-acting DNA sequences 5'-TGACTC-3' found in 5' non-transcribed region of the gene and trans-acting factors including GCN4 as positive factor and its negative factor GCDI 7, and GCNZ as a negative factor of GCD17. I first investigated the role of these trans-acting factors in HIS5 basal expression level by using HIS5-pH05 fusion in which expression of pH05 gene encoding inorganic phosphate-repressible acid phosphatase (APase) is regulated by HIS5 promoter. Strain with gcn2 or gcn4 mutation showed 3 to 4 fold lower APase activity than wild type. The level of APase activity was similar in gcn2 and gcn4 mutants. Trans-acting factors involved in basal level were identified by isolating 14 mutants showing increased expression of HISSPH05 fusion from gcn4 background. All the mutants carry a single nuclear recessive mutation and fall into four complementation groups, designated as bell (basal expression level), be12, be23 and be14.

  • PDF

In Vivo Target RNA Specificity of Trans-Splicing Phenomena by the Group I Intron

  • Song, Min-Sun;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.84-86
    • /
    • 2008
  • The Tetrahymena group I intron has been shown to employ a trans-splicing reaction and has been modified to specifically target and replace human telomerase reverse transcriptase (hTERT) RNA with a suicide gene transcript, resulting in the induction of selective cytotoxicity in cancer cells that express the target RNA, in animal models as well as in cell cultures. In this study, we evaluated the target RNA specificity of trans-splicing phenomena by the group I intron in mice that were intraperitoneally inoculated with hTERT-expressing human cancer cells to validate the anti-cancer therapeutic applicability of the group I intron. To this end, an adenoviral vector that encoded for the hTERT-targeting group I intron was constructed and systemically injected into the animal. 5'-end RACE-PCR and sequencing analyses of the trans-spliced cDNA clones revealed that all of the analyzed products in the tumor tissue of the virus-infected mice resulted from reactions that were generated only with the targeted hTERT RNA. This study implies the in vivo target specificity of the trans-splicing group I intron and hence suggests that RNA replacement via a trans-splicing reaction by the group I intron is a potent anti-cancer genetic approach.

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Comparative Analysis of Intracellular Trans-Splicing Ribozyme Activity Against Hepatitis C Virus Internal Ribosome Entry Site

  • Ryu Kyung-Ju;Lee Seong-Wook
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.361-364
    • /
    • 2004
  • Internal ribosome entry site (IRES) of the hepatitis C virus (HCV) is known to be essential for HCV replication and most conserved among HCV variants. Hence, IRES RNA is a good therapeutic target for RNA-based inhibitors, such as ribozymes. We previously proposed a new anti-HCV modulation strategy based on trans-splicing ribozymes, which can selectively replace HCV transcripts with a new RNA that exerts anti-HCV activity. To explore this procedure, sites which are accessible to ribozymes in HCV IRES were previously determined by employing an RNA mapping method in vitro. In this study, we evaluate the intracellular accessibility of the ribozymes by comparing the trans-splicing activ­ities in cells of several ribozymes targeting different sites of the HCV IRES RNA. We assessed the intra­cellular activities of the ribozymes by monitoring their target-specific induction degree of both reporter gene activity and cytotoxin expression. The ribozyme capable of targeting the most accessible site iden­tified by the mapping studies then harbored the most active trans-splicing activity in cells. These results suggest that the target sites predicted to be accessible are truly the most accessible in the cells, and thus, could be applied to the development of various RNA-based anti-HCV therapies.

Effects of Substrate RNA Structure on the Trans-splicing Reaction by Group I Intron of Tetrahymena thermophila (Tetrahymena thermophila의 group I intron에 의한 trans-splicing 반응에 미치는 표적 RNA 구조의 영향분석)

  • 이성욱
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.211-217
    • /
    • 1999
  • Effects of subsh-ate RNA configuration on the tians-splicing reactcon by group I intron ribozyme of Tetralzynzena thern\ulcornerophila were analyzed with substrate RNAs which have been generated to have very stable structures with stem-loop. RNAinapping strategy was perfo~med in vivo as well as in virro to search the mosl accessible siles to the ~irms-splicing ribozymes in the substrate RNAs. Sequences present in the loop of the target RNAs have shown to be well recognized by and reacted with group I inlron ribozymes while sequences present in the stein do not. Thesc results were confirmed with the experiments of trans-cleavage and rmnssplicing reactmn with ihe specific ribozyines recognizing those sequences. Moreover, sequence analysis of the trans-splicing products have shown that irons-splicing reaction can proceed with high fidelity. In conclusion, the secondary structure of substrate RNAs is one of the most important factors to detemine the ribozyme activity.

  • PDF

Ribozyme-Mediated Replacement of p53 RNA by Targeted Trans-Splicing

  • Shin, Kyung-Sook;Bae, Soo-Jin;Hwang, Eun-Seong;Jeong, Sun-Joo;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.844-848
    • /
    • 2002
  • In more than half of human tumors, the p53 tumor suppressor gene is mutated. Thus, restoration of wild-type p53 activity by repair of mutant RNA could be a potentially promissing approach to cancer treatment. To explore the potential use of RNA repair for cancer therapy, trans-splicing group I ribozymes were developed that could replace mutant p53 RNA with RNA sequence attached to the 3'end of ribozymes. By employing a mapping library of ribozymes, we first determined which regions of the p53 RNA are accessible to ribozymes, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. Next, trans-splicing ribozymes were generated that specifically recognized the sequences around these accessible regions. Subsequently, the ribozymes reacted with and altered the p53 transcripts by transferring a 3'exon tag sequence onto the targeted p53 RNA with high fidelity. Thus, these ribozymes could be utilized to repair mutant p53 in tumors, which would revert the neoplastic phenotype.

Spliced leader sequences detected in EST data of the dinoflagellates Cochlodinium polykrikoides and Prorocentrum minimum

  • Guo, Ruoyu;Ki, Jang-Seu
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • Spliced leader (SL) trans-splicing is a mRNA processing mechanism in dinoflagellate nuclear genes. Although studies have identified a short, conserved dinoflagellate SL (dinoSL) sequence (22-nt) in their nuclear-encoded transcripts, whether the majority of nuclear-coded transcripts in dinoflagellates have the dinoSL sequence remains doubtful. In this study, we investigated dinoSL-containing gene transcripts using 454 pyrosequencing data (Cochlodinium polykrikoides, 93 K sequence reads, 31 Mb; Prorocentrum minimum, 773 K sequence reads, 291 Mb). After making comparisons and performing local BLAST searches, we identified dinoSL for one C. polykrikoides gene transcript and eight P. minimum gene transcripts. This showed transcripts containing the dinoSL sequence were markedly fewer in number than the total expressed sequence tag (EST) transcripts. In addition, we found no direct evidence to prove that most dinoflagellate nuclear-coded transcripts have this dinoSL sequence.

Cancer Cell Targeting with Mouse TERT-Specific Group I Intron of Tetrahymena thermophila

  • Ban, Gu-Yee;Song, Min-Sun;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1070-1076
    • /
    • 2009
  • Telomerase reverse transcriptase (TERT), which prolongs the replicative life span of cells, is highly upregulated in 85-90% of human cancers, whereas most normal somatic tissues in humans express limited levels of the telomerase activity. Therefore, TERT has been a potential target for anticancer therapy. Recently, we described a new approach to human cancer gene therapy, which is based on the group I intron of Tetrahymena thermophila. This ribozyme can specifically mediate RNA replacement of human TERT (hTERT) transcript with a new transcript harboring anticancer activity through a trans-splicing reaction, resulting in selective regression of hTERT-positive cancer cells. However, to validate the therapeutic potential of the ribozyme in animal models, ribozymes targeting inherent transcripts of the animal should be developed. In this study, we developed a Tetrahymena-based trans-splicing ribozyme that can specifically target and replace the mouse TERT (mTERT) RNA. This ribozyme can trigger transgene activity not only also in mTERT-expressing cells but hTERT-positive cancer cells. Importantly, the ribozyme could selectively induce activity of the suicide gene, a herpes simplex virus thymidine kinase gene, in cancer cells expressing the TERT RNA and thereby specifically hamper the survival of these cells when treated with ganciclovir. The mTERT-targeting ribozyme will be useful for evaluation of the RNA replacement approach as a cancer gene therapeutic tool in the mouse model with syngeneic tumors.

The Effect of Trans-cinnamaldehyde on the Gene Expression of Lipopolysaccharide-stimulated BV-2 Cells Using Microarray Analysis (Trans-Cinnamaldehyde가 Lipopolysaccharide로 처리된 BV-2 cell에 미치는 항염증 기전 연구: Microarray 분석)

  • Sun, Young-Jae;Choi, Yeong-Gon;Jeong, Mi-Young;Hwang, Se-Hee;Lee, Je-Hyun;Cho, Jung-Hee;Lim, Sabina
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.13-27
    • /
    • 2009
  • Objectives: Trans-cinnamaldehyde (TCA) is the main component of Cinnamomi Ramulus and it has been reported that TCA inhibits inflammatory responses in various cell types. Inflammation-mediated neurological disorders induce the activation of macrophages such as microglia in brain, and these activated macrophages release various inflammation-related molecules, which can be neurotoxic if overproduced. In this study, we evaluated gene expression profiles using gene chip microarrays in lipopolysaccharide (LPS)-stimulated BV-2 cells to investigate the antiinflammatory effect of TCA on inflammatory responses in brain microglia. Methods: A negative control group was cultured in normal medium and a positive control group was stimulated with $1{\mu}g/ml$ in the absence of TCA. TCA group was pretreated with $10{\mu}g/ml$ before $1{\mu}g/ml$ LPS stimulation. The oligonucleotide microarray analysis was performed to obtain the expression profiles of 28,853 genes using gene chip mouse gene 1.0 ST array in this study. Results: In positive control group, 1522 probe sets were up-regulated in the condition of the cutoff value of 1.5-fold change and 341 genes with Unigene ID were retrieved. In TCA group, 590 probe sets were down-regulated from among 1522 probe sets and 33 genes with Unigene ID were retrieved, which included 6 inflammation-related genes. We found out that Id3 gene is associated with transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway and Klra8 gene is related to natural killer cell-mediated cytotoxicity pathway. Conclusions: The results mean that TCA inhibits inflammatory responses through down-regulating the expressions of inflammation-related genes in LPS-stimulated BV-2 cells.

  • PDF

Analysis of Trans-splicing Transcripts in Embryonic Stem Cell (배아줄기세포에서 트랜스 스플라이싱 전사체의 분석)

  • Ha, Hong-Seok;Huh, Jae-Won;Kim, Dae-Soo;Park, Sang-Je;Bae, Jin-Han;Ahn, Kung;Yun, Se-Eun;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.549-552
    • /
    • 2009
  • Genetic mutations by gene fusion result from chromosomal rearrangement, trans-splicing, and intergenic splicing. Trans-splicing is a phenomenon in which two pre-mRNAs grow together into one. We analyzed the trans-splicing products in embryonic stem cells. By using bioinformatic tools, 70 trans-splicing transcripts were identified. They are classified into 6 types according to fusion pattern: 5'UTR-5'UTR, 5'UTR-3'UTR, 3'UTR-3'UTR, 5'UTR-CDS, 3'UTR-CDS, CDS-CDS. The fusion products are more abundant in CDS regions than in UTR regions, which contain multiple intron numbers. Chromosome analysis showing gene fusion via trans-splicing indicated that chromosomes 17 and 19 were activated. These data are of great use for further studies in relation to fusion genes and human diseases.