• Title/Summary/Keyword: Trans-disciplinary science

Search Result 10, Processing Time 0.029 seconds

Study on the Interdisciplinary Approach of Food Merchandise (외식상품학의 학제적 접근방법 연구)

  • Kim, Ki-Young
    • Culinary science and hospitality research
    • /
    • v.13 no.1 s.32
    • /
    • pp.212-223
    • /
    • 2007
  • The method of study generally includes multi-disciplinary studies, inter-disciplinary studies, cross-disciplinary studies and trans-disciplinary studies by Meeth. In the study of food, however, it can be used intersectionally or step by step. The purpose of this study was to research the types of related studies and define the food merchandise using the multi-disciplinary and inter-disciplinary studies. The food merchandise was defined all things considered menu; it was the academic system about menu design, reengineering and analysis. It constructed social science system and independent research system in holding peculiarity and speciality of it. Then, its own research field was gradually created as the practical and scientific method. Finally, further study about it will be progressed not in the merchandise but in the social science from now on.

  • PDF

Landscape Ecology Concept, Principles and Its Rlation to Monothematic (e.g. Vegetation) Survey (경관생태학의 개념, 원리 및 식생조사와의 관계)

  • Isaak, S. Zonneveld
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.357-372
    • /
    • 1998
  • Land (scape) ecology is a trans-disciplinary science studying the related systems at the earth surface, in their visual, structural and functional aspects. it serves as an umbrella under which abiotic and biotic sciences, in an integrated way, study the for each relevant land attributes and their interrelations. The spatial aspects of these relations have a special interest. Landscape ecology my have a pure scientific purpose, but usually is executed in an applied context, related to land evaluation for land use and conservation. Depending on the aim and application of the study, one of the land attributes may get special attention. Vegetation mapping may contribute to landscape ecological study but also benefit from it especially in case of reconnaissance surveys. This is because in less detailed surveys of any land attribute, like land form, soil, vegetation, one must necessarily apply landscape ecological principles in the survey methodology, including remote sensing.

  • PDF

Multidisciplinary Team Research as an Innovation Engine in Knowledge-Based Transition Economies and Implication for Asian Countries -From the Perspective of the Science of Team Science

  • Lee, Yong-Gil
    • Journal of Contemporary Eastern Asia
    • /
    • v.12 no.1
    • /
    • pp.49-63
    • /
    • 2013
  • This work identifies the key factors influencing the success of multidisciplinary, interdisciplinary, and trans-disciplinary R&D projects in transition economies by integrating knowledge management, organizational, inter/intra-collaboration (open-innovation), and leadership perspectives, while also addressing the perspective of the science of team science, which is an integrative approach to R&D. This is followed by providing the major sub-constructs of team science and policy implications to better facilitate multidisciplinary, interdisciplinary, and transdisciplinary R&D projects in knowledge-based transition economies.

Future Opportunities for life Science Programs in Space

  • Hiroki Yokota;Sun, Hui-Bin;George M. Malacinski
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.239-243
    • /
    • 2000
  • Most space-related life science programs are expensive and time-consuming, requiring international cooperation and resources with trans-disciplinary expertise. A comprehensive future program in "life sciences in space" needs, therefore, well-defined research goals and strategies as well as a sound ground-based program. The first half of this review will describe four key aspects such as the environment in space, previous accomplishments in space (primarily focusing on amphibian embryogenesis), available resources, and recent advances in bioinformatics and biotechnology, whose clear understanding is imperative for defining future directions. The second half of this review will focus on a broad range of interdisciplinary research opportunities currently supported by the National Aeronautics and Space Administration (NASA), National Institute of Health (NIH), and National Science Foundation (NSF). By listing numerous research topics such as alterations in a diffusion-limited metabolic process, bone loss and skeletal) muscle weakness of astronauts, behavioral and cognitive ability in space, life in extreme environment, etc., we will attempt to suggest future opportunities.

  • PDF

Study on Plans for the Establishment of Strategy on Climate Change Adaptation in Korea (국가 기후변화 적응 전략 수립 방안에 관한 연구)

  • Kwon, Won-Tae;Baek, Hee-Jeong;Choi, Kyung-Cheol;Chung, Hyo-Sang
    • Atmosphere
    • /
    • v.15 no.4
    • /
    • pp.213-227
    • /
    • 2005
  • The global mean surface temperature has already increased by $0.6{\pm}0.2^{\circ}C$ over the last century, and warming in Korea is approximately twice as large as the global average. The Intergovernmental Panel on Climate Change (IPCC) has concluded that the majority of warming over the past 50 years could be attributed to human activities (IPCC, 2001a). In addition, the global surface temperature is expected to increase by 1.4 to $5.8^{\circ}C$ depending on the greenhouse gas emission scenarios during the $21^{st}$ century.Climate change resulting from increased greenhouse gas concentrations has the potential to harm societies and ecosystems. Reductions in emissions of greenhouse gases and their concentration in the atmosphere will reduce the degree and likelihood of significant adverse conditions due to the anticipated climate change. Mitigation policy has generally been the primary focus of public attention and policy efforts on climate change. However, some degree of climate change is inevitable due to the combination of continued increases in emissions and the inertia of the global climate system. Adaptation actions and strategies are needed for a complementary approach to mitigation. The United Nations Framework Convention on Climate Change (UNFCCC) currently addresses vulnerability and adaptation in the context of climate change negotiations and in future adaptation may be an important element of work under the Kyoto Protocol. There are several on-going programs to develop effective adaptation strategies and their implementation. But in general, many other countries are still on an initiating stage. The climate change science programs of the United States, Japan, England, and Germany are initiated to understand the current status of climate change science and adaptation researches in the developed countries. In this study, we propose the improvement on systems in policy and research aspects to effectively perform the necessary functions for development of nation-wide adaptation measures and their implementation. In policy aspect, the Korean Panel on Climate Change (KPCC) is introduced as a coordinating mechanism between government organizations related with climate change science, impact assessment and adaptation. Also in research aspect, there is a strong consensus on the need for construction of a national network on climate change research as trans-disciplinary research network.

Nano Convergence Systems for Smart Living

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.55-55
    • /
    • 2015
  • Today, engineers are facing new set of challenges that are quite different from the conventional ones. Information technologies are rapidly commoditizing while the paths beyond the current roadmaps became uncertain as various technologies have been pushed to their limits. Along with these changes in IT ecosystems, grand challenges such as global security, health, sustainability, and energy increasingly require trans-disciplinary solutions that go beyond the traditional arenas in STEM (Science, Technology, Engineering and Mathematics). Addressing these needs is shifting engineering education and research to a new paradigm where the emphasis is placed on the consilience for holistic and system level understanding and the convergence of technology with AHSD (arts, humanities, social science, and design). At the center of this evolutionary convergence, nanotechnologies are enabling novel functionalities such as bio-compatibility, flexibility, low power, and sustainability while on a mission to meet scalability and low cost for smart electronics, u-health, sensing networks, and self-sustainable energy systems. This talk introduces the efforts of convergence based on the emerging nano technology tool sets in the newly launched School of Integrated Technology and the Yonsei Institute of Convergence Technology at Yonsei International Campus. While the conventional devices have largely depended upon the inherent material properties, the newer devices are enabled by nanoscale dimensions and structures in increasingly standardized and scalable fabrication platform. Localized surface plasmon resonance in 0 dimensional nano particles and structures leads to subwavelength confinement and enhanced near-field interactions enabling novel field of metal photonics for sensing and integrated photonic applications [1,2]. Unique properties offered by 1 dimensional nanowires and 2 dimensional materials and structures can enable novel electronic, photonic, nano-bio, and biomimetic applications [3-5]. These novel functionalities offered by the emerging nanotechnologies are continuously finding pathways to be part of smart systems to improve the overall quality of life.

  • PDF

Trans-disciplinary Approach to Molecular Modeling and Experiment in PDP Materials

  • Takaba, Hiromitsu;Serizawa, Kazumi;Onuma, Hiroaki;Kikuchi, Hiromi;Suzuki, Ai;Sahnoun, Riadh;Koyama, Michihisa;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Carpio, Carlos A. Del;Kubo, Momoji;Kajiyama, Hiroshi;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1441-1444
    • /
    • 2008
  • We developed ultra-accelerated quantum chemical molecular dynamics and spectroscopic characterization simulators for development of PDP materials. By combination of these simulators, realistic structure of PDP materials is drawn on the computer. Furthermore, based on the structures, various properties such as cathode luminescence spectrum and secondary electron emission, is successfully evaluated. The strategy of "Experiment integrated Computational Chemistry" using developed simulators will presented that has the potential in being powerful tool for designing the PDP materials.

  • PDF

Nanocommunication Design in Graduate-Level Education and Research Training (대학원 수준 교육과 연구 훈련에서의 나노소통 설계)

  • Itoh, Tadashi;Akai, Hisazumi;Takeda, Seiji;Ogawa, Hisahito;Ichikawa, Satoshi;Geshi, Masaaki;Ara, Masato;Niioka, Hirohiko
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.423-431
    • /
    • 2010
  • In order to teach the accumulated knowledge of nanoscience, nanoengineering and nanotechnology to graduate school students and young scientists with the sense of public engagement, Osaka University started from 2004 to prepare and offer various kinds of education and training programs such as trans-disciplinary graduate-school minor program, evening course refresher program, short-term international research training program, etc. It offers a series of lectures, partly broadcasted live to satellite classrooms. In addition, the students can join intensive hands-on training programs using modern facilities, allowing them to design, fabricate, measure, characterize and functionalize nanomaterials and nanodevices. In addition, there are four specially designed lectures and research training programs aimed for nanocommunication including social, legal and ethical relationship: "Nanotechnology Career-up Lectures", "Social Engagement on Nanotechnology", "Road Map Design on Nanotechnology", and "Project-Aimed Learning and Training Programs (PAL)". The outline of the whole programs is described together with the specialized programs for nanocommunication.

Geography: A Portal to Green Growth (녹색성장과 지리학)

  • Yu, Keun-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 2010
  • Green Growth was declared as a national development agenda in 2008. There are many contributing concepts and factors in the process of molding the agenda, such as climate change, sustainable development, globalization, the so-called 747 campaign pledges by President Lee in 2007, and the hunger for economic growth in Asia and the Pacific. Green Growth is rather growth-oriented and pays less attention to environmental conservation and social justice. Green Development would fit better as the name of the agenda, dealing with the weaknesses of Green Growth. Climate change itself is a testing ground for geographic knowledges, whose demand is growing rapidly. The contemporary issue increasingly bears complexity that Earth System Science and Sustainability Science have emerged as a research and applications program. Geography is widely recognized as a portal to these programs, where inter- and trans-disciplinary studies are required. Regional potentials should be evaluated from a holistic view so that proper development goals are chosen. Different development trajectory should be taken, depending on the amount of potential a region bears. Material loop should be closed for environmentally sound regions. Green way of life is essential for low carbon society. In the circumstances of climate change in Korean Peninsula and needing of energy efficiency, geographic insight or imagination is urgent for Green Development.

Complex Terrain and Ecological Heterogeneity (TERRECO): Evaluating Ecosystem Services in Production Versus water Quantity/quality in Mountainous Landscapes (산지복잡지형과 생태적 비균질성: 산지경관의 생산성과 수자원/수질에 관한 생태계 서비스 평가)

  • Kang, Sin-Kyu;Tenhunen, John
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.307-316
    • /
    • 2010
  • Complex terrain refers to irregular surface properties of the earth that influence gradients in climate, lateral transfer of materials, landscape distribution in soils properties, habitat selection of organisms, and via human preferences, the patterning in development of land use. Complex terrain of mountainous areas represents ca. 20% of the Earth's terrestrial surface; and such regions provide fresh water to at least half of humankind. Most major river systems originate in such terrain, and their resources are often associated with socio-economic competition and political disputes. The goals of the TERRECO-IRTG focus on building a bridge between ecosystem understanding in complex terrain and spatial assessments of ecosystem performance with respect to derived ecosystem services. More specifically, a coordinated assessment framework will be developed from landscape to regional scale applications to quantify trade-offs and will be applied to determine how shifts in climate and land use in complex terrain influence naturally derived ecosystem services. Within the scope of TERRECO, the abiotic and biotic studies of water yield and quality, production and biodiversity, soil processing of materials and trace gas emissions in complex terrain are merged. There is a need to quantitatively understand 1) the ecosystem services derived in regions of complex terrain, 2) the process regulation occurred to maintain those services, and 3) the sensitivities defining thresholds critical in stability of these systems. The TERRECO-IRTG is dedicated to joint study of ecosystems in complex terrain from landscape to regional scales. Our objectives are to reveal the spatial patterns in driving variables of essential ecosystem processes involved in ecosystem services of complex terrain region and hence, to evaluate the resulting ecosystem services, and further to provide new tools for understanding and managing such areas.