• Title/Summary/Keyword: Trajectory planning

Search Result 318, Processing Time 0.025 seconds

Estimating Travel Frequency of Public Bikes in Seoul Considering Intermediate Stops (경유지를 고려한 서울시 공공자전거 통행발생량 추정 모형 개발)

  • Jonghan Park;Joonho Ko
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.1-19
    • /
    • 2023
  • Bikes have recently emerged as an alternative to carbon neutrality. To understand the demand for public bikes, we endeavored to estimate travel frequency of public bike by considering the intermediate stops. Using the GPS trajectory data of 'Ttareungyi', a public bike service in Seoul, we identified a stay point and estimated travel frequency reflecting population, land use, and physical characteristics. Application of map matching and a stay point detection algorithm revealed that stay point appeared in about 12.1% of the total trips. Compared to a trip without stay point, the trip with stay point has a longer average travel distance and travel time and a higher occurrence rate during off-peak hours. According to visualization analysis, the stay points are mainly found in parks, leisure facilities, and business facilities. To consider the stay point, the unit of analysis was set as a hexagonal grid rather than the existing rental station base. Travel frequency considering the stay point were analyzed using the Zero-Inflated Negative Binomial (ZINB) model. Results of our analysis revealed that the travel frequency were higher in bike infrastructure where the safety of bike users was secured, such as 'Bikepath' and 'Bike and pedestrian path'. Also, public bikes play a role as first & last mile means of access to public transportation. The measure of travel frequency was also observed to increase in life and employment centers. Considering the results of this analysis, securing safety facilities and space for users should be given priority when planning any additional expansion of bike infrastructure. Moreover, there is a necessity to establish a plan to supply bike infrastructure facilities linked to public transportation, especially the subway.

Analysis of Dose Delivery Error in Conformal Arc Therapy Depending on Target Positions and Arc Trajectories (동적조형회전조사 시 표적종양의 위치변위와 조사반경의 변화에 따른 선량전달 오류분석)

  • Kang, Min-Young;Lee, Bo-Ram;Kim, You-Hyun;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • The aim of the study is to analyze the dose delivery error depending on the depth variation according to target positions and arc trajectories by comparing the simulated treatment planning with the actual dose delivery in conformal arc therapy. We simulated the conformal arc treatment planning with the three target positions (center, 2.5 cm, and 5 cm in the phantom). For the experiments, IMRT body phantom (I’mRT Phantom, Wellhofer Dosimetry, Germany) was used for treatment planning with CT (Computed Tomography, Light speed 16, GE, USA). The simulated treatment plans were established by three different target positions using treatment planning system (Eclipse, ver. 6.5, VMS, Palo Alto, USA). The radiochromic film (Gafchromic EBT2, ISP, Wayne, USA) and dose analysis software (OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany) were used for the measurement of the planned arc delivery using 6 MV photon beam from linear accelerator (CL21EX, VMS, Palo Alto, USA). Gamma index (DD: 3%, DTA: 2 mm) histogram and dose profile were evaluated for a quantitative analysis. The dose distributions surrounded by targets were also compared with each plans and measurements by conformity index (CI), and homogeneity index (HI). The area covered by 100% isodose line was compared to the whole target area. The results for the 5 cm-shifted target plan show that 23.8%, 35.6%, and 37% for multiple conformal arc therapy (MCAT), single conformal arc therapy (SCAT), and multiple static beam therapy, respectively. In the 2.5 cm-shifted target plan, it was shown that 61%, 21.5%, and 14.2%, while in case of center-located target, 70.5%, 14.1%, and 36.3% for MCAT, SCAT, and multiple static beam therapy, respectively. The values were resulted by most superior in the MCAT, except the case of the 5 cm-shifted target. In the analysis of gamma index histogram, it was resulted of 37.1, 27.3, 29.2 in the SCAT, while 9.2, 8.4, 10.3 in the MCAT, for the target positions of center, shifted 2.5 cm and 5 cm, respectively. The fail proportions of the SCAT were 2.8 to 4 times as compared to those of the MCAT. In conclusion, dose delivery error could be occurred depending on the target positions and arc trajectories. Hence, if the target were located in the biased position, the accurate dose delivery could be performed through the optimization of depth according to arc trajectory.

Development of Body-Weight-Support System for Walking Rehabilitation (보행 재활을 위한 신체 자중 보상용 모바일 로봇에 관한 연구)

  • Suh, Seung-Whan;Yu, Seung-Nam;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3658-3665
    • /
    • 2010
  • As the population of elderly people and disabled people are increased, various demands for human welfare using robot system are raised. Especially autonomous rehabilitation system using robot could reduce the human effort while maintaining the its intrinsic efficacy. This study deals with mobile gait rehabilitation system which combined with BWS (Body Weight Support) for training of elderly and handicapped people who suffer the muscle force weakness of lower extremity. BWS which is designed by kinematic analysis of body lifting characteristics and walking guide system are integrated with main control system and wheeled platform. This mobile platform is operated by UCS (User Command System) and autonomous trajectory planning algorithm. Finally, through the EMG (Electromyography) signal measuring and its analysis for subject, performance and feasibility of developed system is verified.

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.

Multilevel Modeling Analysis of Developmental Changes in Early Adolescent Aggression and Family Factors (초기 청소년기 공격성의 발달적 변화와 가족 영향 요인에 대한 다층모형 분석)

  • Choi, Jung-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.294-307
    • /
    • 2014
  • The purpose of this study is to examine the trajectory of early adolescent aggression and to assess the effects of perceived family factors on it. This study investigated the changes in aggression over time and the effects of three family factors, parental attachment, parental monitoring, and family conflict, on the changes using multilevel modeling. The data from Korea Youth Panel Survey(KYPS) of fourth graders who were followed over five years were analyzed. The results indicated that there was a significant average increase followed by a slight decrease in aggression over time; that is, the data followed a quadratic trend. Parental attachment, parental monitoring, and family conflict had significant time-independent effects on aggression, while only family conflict had a significant time-dependent effect on aggression. These results imply that family factors need to be emphasized in planning prevention and intervention programs to reduce aggression during adolescence.

Load-Balancing Rendezvous Approach for Mobility-Enabled Adaptive Energy-Efficient Data Collection in WSNs

  • Zhang, Jian;Tang, Jian;Wang, Zhonghui;Wang, Feng;Yu, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1204-1227
    • /
    • 2020
  • The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs.

Optimal Positioning of Small UAVs for Communication Relay (통신중계를 위한 다수 소형 무인항공기의 최적배치)

  • Jeong, Junho;Kim, Seungkeun;Oh, Hyondong;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.461-467
    • /
    • 2014
  • This paper investigates using small UAVs as communications relay nodes for expanding communications links and improving communications quality, primarily for a fleet of ground or navy vessels. An airborne relay in ground/maritime space can effectively connect to units operating over the horizon, beyond normal communication range, or under limited satellite communication environment. Even if the equipment development is mature for communications relay, where to locate UAVs for efficient relay is still a pending question. With this background, this paper will develop high-level deployment algorithms to optimize the location of UAVs for improving the connectivity of a wireless network among a fleet of ground or navy vessels.

Characteristics of Vertical Profiles of Local Aerosol Mass Concentration According to Air Mass Pathways over the Korean Peninsula During Winter (한반도 겨울철 공기이동경로에 따른 에어로졸 농도의 연직분포 특성)

  • Ko, A-Reum;Kim, Jinwon;Chang, Ki-Ho;Cha, Joo-Wan;Lee, Sang-Min;Ha, Jong-Cheol
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.525-535
    • /
    • 2019
  • Vertical distributions of aerosol mass concentrations over Seoul and Gangneung from January to February 2015 were investigated using aerosol Mie-scattering lidars. Vertical mass concentration of aerosol was calculated from the lidar data using KALION's algorithm and quantitatively compared with ground PM10 concentration to obtain objectivity of data. The backward trajectories calculated using HYSPLIT (version 4) were clustered into 5 traces for Seoul and 6 traces for Gangneung, and the observed aerosol vertical mass distribution was analyzed for individual trajectories. Result from the analysis shows that, aerosol concentrations with in the planetary boundary layer were highest when airflows into the measurement points originated in the Shandong Peninsula or the Inner Mongolia. In addition, the difference of aerosol mass concentrations in the two regions below 1 km was about twice as large as that in the long range transport from the Shandong Peninsula compared to the local emission. This result shows that the air quality over Korea related to particulate matters are affected more by aerosol emissions in the upstream source regions and the associated transboundary transports than local emissions. This study also suggests that the use of local aerosol observations is critical for accurate simulations of aerosol-cloud interactions.

A study on an error recovery expert system in the advanced teleoperator system (지적 원격조작시스템의 일환으로서 에러회복 전문가 시스템에 관한 연구)

  • 이순요;염준규;오제상;이창민
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.19-28
    • /
    • 1987
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment, then the mode changes into the manual mode. The operation by program and the operation by hyman recover the error in the manual mode. The system resumew the automatic mode and continues the given task. In order to utilize the inverse kinematics as means of the operation by program in the manual mode, Lee and Nagamachi determined the end point of the robot trajectory planning which varied with the height of the task object recognized by a T.V monitor, solved the end point by the fuzzy set theory, and controlled the position of the robot hand by the inverse kinematics and the posture of the robot hand by the operation by human. But the operation by human did take a lot of task time because the position and the posture of the robot hand were separately controlled. To reduce the task time by human, this paper developes an error recovery expert system (ERES). The position of the robot hand is controlled by the inverse kinematics of the cartesian coordinate system to the end point which is deter- mined by the fuzzy set theory. The posture of the robot hand is controlled by the modulality of the robot hand's motion which is made by the posture of the task object. The knowledge base and the inference engine of the ERES is developed using the muLISP-86 language. The experimental results show that the average task time by human the ERES which was performed by the integration of the position and the posture control of the robot hand is shorter than that of the research, done by the preliminary experiment, which was performed by the separation of the position and the posture control of the robot hand. A further study is likely to research into an even more intelligent robot system control usint a superimposed display and digitizer which can present two-dimensional coordinate of the work space for the convenience of human interaction.

  • PDF

Modeling and RPY Motion Analysis of Bipedal Walking Robots (이족 로봇의 보행 모델링 및 롤/피치/요 운동 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.353-358
    • /
    • 2011
  • This paper presents a virtual-legged walking model for bipedal robots and analyzes its fundamental RPY(Roll, Pitch, and Yaw) motion effects by simulation. For the purpose of identifying the motion effects of the bipedal walking, we assign some arbitrary trajectories both at the center of mass and at the center of pressure of the robot based on human walking. And then we verify the major moments to the roll, pitch, and yaw directions of the robot. As a result, it is shown that those motions are natural in the process of bipedal walking and they are deeply dependent on the step distance, the vertical level of the center of mass, and the acceleration of the robot. The importance of trajectory planning for the footstep location during a bipedal walking is finally addressed in terms of balance.