• Title/Summary/Keyword: Trajectory Interpolation

Search Result 51, Processing Time 0.021 seconds

Numerical Ballistic Modeling in Game Engines

  • YoungBo Go;YunJeong Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • To improve the overall performance and realism of your game, it is important to calculate the trajectory of a projectile accurately and quickly. One way to increase realism is to use a ballistic model that takes into account factors such as air resistance, density, and wind when calculating a projectile's trajectory. However, the more these factors are taken into account, the more computationally time-consuming and expensive it becomes, creating a trade-off between overall performance and efficiency. Therefore, we present an optimal solution to find a balance between ballistic model accuracy and computation time. We perform ballistic calculations using numerical methods such as Euler, Velocity Verlet, RK2, RK4, and Akima interpolation, and measure and compare the computation time, memory usage (RSS, Resident Set Size), and accuracy of each method. We show developers how to implement more accurate and efficient ballistic models and help them choose the right computational method for their numerical applications.

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF

A Study on the Synthesis of Four-Bur Linkage Generating Automatic Path by Using B-Spline Interpolation (B-스플라인 보간법에 의한 자동 경로 생성이 가능한 4절링크의 합성에 관한 연구)

  • Kim, Jin-Su;Yang, Hyun-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.126-131
    • /
    • 1999
  • Up until now, it is said that no satisfactory computer solutions have been found for synthesizing four-bar linkage based on the prescribed coupler link curve. In our study, an algorithm has been developed to improve the design synthesis of four-bar linkage automatically generating prescribed path by using B-spline interpolation. The suggested algorithm generates the desired coupler curve by using B-spline interpolation, and hence the generated curve approximates as closely as to the desired curve representing coupler link trajectory. Also, when comparing each generated polygon with the control polygon, rapid comparison by applying convex hull concept. finally, optimization process using ADS is incorporated into the algorithm based on the 5 precision point method to reduce the total optimization process time. As for examples, three different four-bar linkages were tested and the results showed the effectiveness of the algorithm.

  • PDF

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

A study on the ZMP Trajectory generation in multi step walking of IWR-III Biped Walking Robot (이족보형로봇의 전체 보행구간에서의 균형점 궤적 생성에 관한 연구)

  • Koo, Ja-Hyuk;Choi, Young-Ha;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.546-548
    • /
    • 1998
  • This paper deals with ZMP trajectory generation in multi step walking of IWR-III(Inha Walking Robot) Biped Walking Robot. Biped walking is realized by combining 6-types of pre-defined steps and the actual ZMP can be used as a stability index of a robot. For the good tracking of actual ZMP, desired ZMP trajectory is generated during the whole walking time not for each step. Trajectory generation is performed considering velocities and accelerations of given via points using 5-th order polynomial interpolation method. As a result, balancing joints have a more smooth and continuous motion and actual ZMP has a better tracking ability. Numerical simulator is done by MATLAB to guarantee the walking of a robot satisfying the ZMP stability.

  • PDF

The Interpolation Method for the missing AIS Data of Ship

  • Nguyen, Van-Suong;Im, Nam-kyun;Lee, Sang-min
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.377-384
    • /
    • 2015
  • The interpolation of missing AIS data can be used for recovering the lost data of a ship's state which is then able to produce useful information for VTS stations or other ships. Previous research has introduced some interpolating methods however there are some problems with regard to missing AIS data. This paper proposes one new method which includes linear interpolation, cubic Hermit interpolation and an identification mechanism to overcome some of those limitations, first AIS data regarding ship position, COG, SOG and HDG is divided into separate time series, then the characteristic of the missing data is investigated into through using an identification mechanism, an appropriate interpolation is selected to fit all the time series which matches the characteristics. Numerical experiments are carried out using real AIS data to validate the algorithm of this approach and the results are compared with the previous method, after which the actual missing area is suggested to be interpolated by the proposed method. The interpolation results show this approach can be applied well in practice.

Spline parameterization based nonlinear trajectory optimization along 4D waypoints

  • Ahmed, Kawser;Bousson, Kouamana;Coelho, Milca de Freitas
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.391-407
    • /
    • 2019
  • Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.

Deep Learning Research on Vessel Trajectory Prediction Based on AIS Data with Interpolation Techniques

  • Won-Hee Lee;Seung-Won Yoon;Da-Hyun Jang;Kyu-Chul Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.1-10
    • /
    • 2024
  • The research on predicting the routes of ships, which constitute the majority of maritime transportation, can detect potential hazards at sea in advance and prevent accidents. Unlike roads, there is no distinct signal system at sea, and traffic management is challenging, making ship route prediction essential for maritime safety. However, the time intervals of the ship route datasets are irregular due to communication disruptions. This study presents a method to adjust the time intervals of data using appropriate interpolation techniques for ship route prediction. Additionally, a deep learning model for predicting ship routes has been developed. This model is an LSTM model that predicts the future GPS coordinates of ships by understanding their movement patterns through real-time route information contained in AIS data. This paper presents a data preprocessing method using linear interpolation and a suitable deep learning model for ship route prediction. The experimental results demonstrate the effectiveness of the proposed method with an MSE of 0.0131 and an Accuracy of 0.9467.

Improved Implementation Algorithm for Continuous-time RHC (연속형 RHC에 대한 개선된 구현 알고리즘)

  • Kim, Tae-Shin;Kim, Chang-You;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.755-760
    • /
    • 2005
  • This paper proposes an improved implementation algorithm for the continuous-time receding horizon control (RHC). The proposed algorithm has a feature that it has better control performance than the existing algorithm. Main idea of the proposed algorithm is that we can approximate the original RHC problem better by assuming the predicted input trajectory on the prediction horizon has a continuous form, which is constructed from linear interpolation of finite number of vectors. This, in turn, leads to improved control performance. We derive a predictor such that it takes linear interpolation into account and proposes the method by which we can express the cost exactly. Through simulation study fur an inverted pendulum, we illustrate that the proposed algorithm has the better control performance than the existing one.