• Title/Summary/Keyword: Trajectory Index

Search Result 127, Processing Time 0.026 seconds

Trajectory Indexing for Efficient Processing of Range Queries (영역 질의의 효과적인 처리를 위한 궤적 인덱싱)

  • Cha, Chang-Il;Kim, Sang-Wook;Won, Jung-Im
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.487-496
    • /
    • 2009
  • This paper addresses an indexing scheme capable of efficiently processing range queries in a large-scale trajectory database. After discussing the drawbacks of previous indexing schemes, we propose a new scheme that divides the temporal dimension into multiple time intervals and then, by this interval, builds an index for the line segments. Additionally, a supplementary index is built for the line segments within each time interval. This scheme can make a dramatic improvement in the performance of insert and search operations using a main memory index, particularly for the time interval consisting of the segments taken by those objects which are currently moving or have just completed their movements, as contrast to the previous schemes that store the index totally on the disk. Each time interval index is built as follows: First, the extent of the spatial dimension is divided onto multiple spatial cells to which the line segments are assigned evenly. We use a 2D-tree to maintain information on those cells. Then, for each cell, an additional 3D $R^*$-tree is created on the spatio-temporal space (x, y, t). Such a multi-level indexing strategy can cure the shortcomings of the legacy schemes. Performance results obtained from intensive experiments show that our scheme enhances the performance of retrieve operations by 3$\sim$10 times, with much less storage space.

A Time Interval Index for Tracking Trajectories of RFID Tags : SLR-Tree (RFID 태그의 이력 추적을 위한 시간 간격 색인 : SLR-트리)

  • Ryu, Woo-Seok;Ahn, Sung-Woo;Hong, Bong-Hee;Ban, Chae-Hoon;Lee, Se-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • The trajectory of a tag in RFID system is represented as a interval that connects two spatiotemporal locations captured when the tag enters and leaves the vicinity of a reader. Whole trajectories of a tag are represented as a set of unconnected interval because the location of the tag which left the vicinity of a reader is unknown until it enters the vicinity of another reader. The problems are that trajectories of a tag are not connected. It takes a long time to find trajectories of a tag because it leads to searching the whole index. To solve this problem, we propose a technique that links two intervals of the tag and an index scheme called SLR-tree. We also propose a sharing technique of link information between two intervals which enhances space utilization of nodes, and propose a split policy that preserves shared-link information. And finally, we evaluate the performance of the proposed index and prove that the index processes history queries efficiently.

Ecological Impact Analysis of a Stream on the Dam Construction Using Species Biotic Index (SBI) as a Tool of Ecosystem Health Assessment

  • An, Kwang-Guk;Kim, Jai-Ku
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.495-502
    • /
    • 2007
  • Species biotic index (SBI), based on a fish assemblage, was applied to a stream assessment using long-term ecological fish data set (1996 to 2001) in Boryong dam area, which is located in the mainstream of Ungchun Stream of Chungnam province, Korea. According to the methods of Hilsenhoff (1988), the scores of tolerance guild assigned 10 classes to each species by its habitat and feeding guild, but modified current 7 criteria to 5 scoring standards due to unclear borderline among species. Relative abundance in the species number of upper stream guilds was only 7% of the total, whereas the abundance in the species number of middle to downstream upper stream guilds was 64%. Mean SBI, based on dataset in Site 1 during 1995-2001 averaged 5.10, which was judged as a "good" condition by the rank criteria of SBI. Before the dam construction, mean SBI in the Site 1 was 4.61, indicating a "good" condition, but after the dam construction, mean SBI was 5.60, indicating a "fair" condition. Trajectory analysis in the Site 1 showed significantly (One-way ANOVA, $F_{6,21}=3.26$, p=0.02) different among years, reflecting the changes of fish composition and population density by the dam construction, whereas Site 2 showed no significant changes ($F_{6,21}=1.00$, P =0.45) difference among years. Mean SBI prior to the dam construction in the Site 3 was 4.52 but after the construction, the value was 6.30, indicating a distinct difference between the pre- and post-dam construction. Trajectory analysis at the Site 3 supported this fact: Values of SBI showed significantly ($F_{6,21}$=14.37, p<0.01) different. Mean SBI was 4.67 in the Site 4, indicating a "good" condition in the health and the health rank was same as the sampling sites 1, 2, and 4. Trajectory in the Site 4 showed no significant ($F_{6,21}=2.35$, p=0.07) difference among the years. Overall, our trajectory analysis indicated that three of four sampling sites (sites 1, 3, 4) showed significant decreases (n=7, p<0.05) and that the proportions of sensitive species declined evidently in the sites 1 and 2 and the tolerant species increased in the dam sites. Our outcomes may be used as a key data for diagnosis of the long-term ecological impact in the future in the watershed.

Minimum-Time Trajectory Planning for a Robot Manipulator amid Obstacles (로봇팔의 장애물 중에서의 시간 최소화 궤도 계획)

  • 박종근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.78-86
    • /
    • 1998
  • This paper presents a numerical method of the minimum-time trajectory planning for a robot manipulator amid obstacles. Each joint displacement is represented by the linear combination of the finite-term quintic B-splines which are the known functions of the path parameter. The time is represented by the linear function of the same path parameter. Since the geometric path is not fixed and the time is linear to the path parameter, the coefficients of the splines and the time-scale factor span a finite-dimensional vector space, a point in which uniquely represents the manipulator motion. The displacement, the velocity and the acceleration conditions at the starting and the goal positions are transformed into the linear equality constraints on the coefficients of the splines, which reduce the dimension of the vector space. The optimization is performed in the reduced vector space using nonlinear programming. The total moving time is the main performance index which should be minimized. The constraints on the actuator forces and that of the obstacle-avoidance, together with sufficiently large weighting coefficients, are included in the augmented performance index. In the numerical implementation, the minimum-time motion is obtained for a planar 3-1ink manipulator amid several rectangular obstacles without simplifying any dynamic or geometric models.

  • PDF

Analysis on Effective Walking Pattern for Multi-Legged Robots (다족 로봇을 위한 효과적인 보행 패턴 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.622-628
    • /
    • 2009
  • A proper walking pattern is to be assigned for a walk of multi-legged robots. For the purpose of identifying a good walking pattern for multi-legged robots, this paper consider a simple model of quadruped robotic walking and analyze its walking balance based on the centroid of foot polygons formed in every step. A performance index to estimate the walking balance is also proposed. Simulation studies show that the centroid trajectory of foot polygons and the walking balance in a common quadruped walking are different according to the walking pattern employed. Based on the walking balance index and a bio-mimetic aspect, a useful walking pattern for quadruped robots is finally addressed.

Methodology for Evaluating Collision Risks Using Vehicle Trajectory Data (개별차량 주행패턴 분석을 통한 교통사고 위험도 분석 기법)

  • Kim, Joon-Hyung;Song, Tai-Jin;Oh, Cheol;Sung, Nak-Moon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.51-62
    • /
    • 2008
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following and lane-changing events generated by individual vehicles traveling within video surveillance area. The proposed methodology derived three indices including real-time safety index(RSI) based on the concept of safe stopping distance, time-to-collision(TTC), and the collision energy based on the conservation of momentum. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing(VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

Methodology for Evaluating Real-time Rear-end Collision Risks based on Vehicle Trajectory Data Extracted from Video Image Tracking (영상기반 실시간 후미추돌 위험도 분석기법 개발)

  • O, Cheol;Jo, Jeong-Il;Kim, Jun-Hyeong;O, Ju-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.173-182
    • /
    • 2007
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following events between individual vehicles traveling surveillance area. The proposed methodology applied two indices including real-time safety index (RSI) based on the concept of safe stopping distance and time-to-collision (TTC) to the evaluation of safety performance. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing (VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

Low Sensitive Optimal Steering System of Ships at Sea (저감도최적조타계의 설계에 관한 연구)

  • 이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.4 no.1
    • /
    • pp.19-30
    • /
    • 1980
  • The usual procedure for the optimal design of ship's steering system is to minimize a chosen quadratic performance index, which isdetermined from the view point of economic run. However, the optimal control synthesized in such a straightforward fashion is unsatisfactory because ship's parameters differ from their nominal values due to uncertainties and errors in measurement and/or simplifications in mathematical modelling, and/or the variation of the ship's loading condition. In an attempt to resolve this difficulty, this paper presents a method for designing a low sensitive optimal steering system in a way as to minimize not only given performance index but also the sensitivity of the performance index and trajectory sensitivity. It is also shown that the optimal control so obtained will result in a system whose performance index and transient response are low sensitive to small varation in ship's time constant.

  • PDF

A Node Relocation Strategy of Trajectory Indexes for Efficient Processing of Spatiotemporal Range Queries (효율적인 시공간 영역 질의 처리를 위한 궤적 색인의 노드 재배치 전략)

  • Lim Duksung;Cho Daesoo;Hong Bonghee
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.664-674
    • /
    • 2004
  • The trajectory preservation property that stores only one trajectory in a leaf node is the most important feature of an index structure, such as the TB-tree for retrieving object's moving paths in the spatio-temporal space. It performs well in trajectory-related queries such as navigational queries and combined queries. But, the MBR of non-leaf nodes in the TB-tree have large amounts of dead space because trajectory preservation is achieved at the sacrifice of the spatial locality of trajectories. As dead space increases, the overlap between nodes also increases, and, thus, the classical range query cost increases. We present a new split policy and entry relocation policies, which have no deterioration of the performance for trajectory-related queries, for improving the performance of range queries. To maximally reduce the dead space of a non-leaf node's MBR, the Maximal Area Reduction (MAR) policy is used as a split policy for non-leaf nodes. The entry relocation policy induces entries in non-leaf nodes to exchange each other for the purpose of reducing dead spaces in these nodes. We propose two algorithms for the entry relocation policy, and evaluate the performance studies of new algorithms comparing to the TB-tree under a varying set of spatio-temporal queries.

Collision-Free Trajectory Control for Multiple Mobile Robots in Obstacle-resident Workspace Based on Neural Optimization Networks (장애물이 있는 작업공간에서 신경최적화 회로망에 의한 다중 이동로봇트의 경로제어)

  • ;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.403-413
    • /
    • 1990
  • A collision free trajectory control for multiple mobile robots in obstacle-resident workspace is proposed. The proposed method is based on the concept of neural optimization network which has been applied to such problems which are too complex to be handled by traditional analytical methods, and gives good adaptibility for unpredictable environment. In this paper, the positions of the mobile robot are taken as the variables of the neural circuit and the differential equations are derived based on the performance index which is the weighted summation of the functions of the distances between the goal and current position of each robot, between each pair of robots and between the goal and current position of each robot, between each pair of robots and between obstacles and robots. Also is studied the problem of local minimum and of detour in large radius around obstacles, which is caused by inertia of mobile robots. To show the validity of the proposed method an example is illustrated by computer simulation, in which 6 mobile robots with mass and friction traverse in a workspace with 6 obstacles.