• 제목/요약/키워드: Trajectory Following Control

검색결과 98건 처리시간 0.025초

Implementation of Ship Trajectory Following Algorithm

  • Wonjin Choi;Seung-Hwan Jun
    • 한국항해항만학회지
    • /
    • 제47권2호
    • /
    • pp.49-56
    • /
    • 2023
  • As interest in autonomous ships continues to grow, researchers around the world are dedicating themselves to the development of relevant technologies. However, these technologies are not yet perfect. Several technical problems remain unresolved. To address these problems, this study presents the implementation of a ship trajectory algorithm for group navigation, where followers can navigate by following the trajectory of a leader. The algorithm works by storing the leader's trajectory as a follow-point and by calculating the azimuth using the line-of-sight guidance law to reach it. A course-keeping controller based on PD control is implemented to follow the target course and a speed control algorithm is designed to prevent collisions. Sea experiments were conducted using 1 m class small RC model boats to verify the proposed algorithm. The follower successfully navigated by following the leader's trajectory and maintained the designated distance to the forward boat. This study is significant in that it implements an algorithm for the follower to follow the trajectory of the leader rather than directly following it as in conventional methods, and verifies it through sea experiments.

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권3호
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

복수개 로보트의 협조에 의한 경로제어 (Coordinate control of multi-robots for the trajectory following)

  • 이혁희;서일홍;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.317-320
    • /
    • 1986
  • A co-operative position control is proposed for two robot manipulators with 5 degree of freedoms to transfer an object following a specified trajectory, where each manipulator is assumed to change the posture of its end effector without releasing the object.

  • PDF

로보트 팔의 궤도제어를 위한 가변구조제어방식 (Variable structrure system control method for the trajectory control of robot arm)

  • 김주홍;송동설;엄기환;최우승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.12-17
    • /
    • 1991
  • In this paper, a variable structure system control method is proposed to the trajectory control of robot arm. A proposed method uses nonlinear switching function and saturation function. Furthermore, learning control method uses to decrease of the following error. The computer simulation results show that the chattering and the following error decrease and is improved the control the performance by a proposed method.

  • PDF

Dynamic Modeling and Adaptive Neural-Fuzzy Control for Nonholonomic Mobile Manipulators Moving on a Slope

  • Liu Yugang;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.197-203
    • /
    • 2006
  • This paper addresses dynamic modeling and task-space trajectory following issues for nonholonomic mobile manipulators moving on a slope. An integrated dynamic modeling method is proposed considering nonholonomic constraints and interactive motions. An adaptive neural-fuzzy controller is presented for end-effector trajectory following, which does not rely on precise apriori knowledge of dynamic parameters and can suppress bounded external disturbances. Effectiveness of the proposed algorithm is verified through simulations.

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획 (Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments)

  • 서장필;이경수
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

선박의 항로추종을 위한 LOS 가이던스 시스템의 제안 (A Proposal of an LOS Guidance System of a Ship for Path Following)

  • 김종화;이병결
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.363-368
    • /
    • 2005
  • This paper proposes an LOS(line-of-sight) guidance system of a ship for path following. From the viewpoint of a control configuration, guidance is a special type of compensation algorithm that is placed in front of the controller to accomplish navigational objects. A guidance system generates a reference trajectory for trajectory tracking or path control and decides the desired velocity, position and heading angle. A control system executes commands based on a reliable guidance law during navigation. An LOS vector from the vessel to a point on the path between two way-points in straight-line navigation or a point among turning circle in turning navigation is selected, and then a heading angle is calculated to converge the desired path based on the LOS vector. The LOS guidance law is defined for the straight-line and the turning circle, respectively. The effectiveness of the suggested LOS guidance system is assured through computer simulation.

Backward motion control of a mobile robot with n passive trailers

  • Park, Myoung-Kuk;Chung, Woo-Jin;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1190-1195
    • /
    • 2003
  • In this paper, it is shown how a robot with n passive trailers can be controlled in backward direction. When driving backward direction, a kinematic model of the system is represented highly nonlinear equations. The problem is formulated as a trajectory following problem, rather than control of independent generalized coordinates. Also, the state and input saturation problems are formulated as a trajectory generation problem. The trajectory is traced by a rear hinge point of the last trailer, and reference trajectories include line segments, circular shapes and rectangular turns. Experimental verifications were carried out with the PSR-2(public service robot $2^{nd}$ version) with three passive trailers. Experimental result showed that the backward motion control can be successfully carried out using the proposed control scheme.

  • PDF