• Title/Summary/Keyword: Trajectory Analysis

Search Result 952, Processing Time 0.028 seconds

Gait Generation for Quadruped Robots Using Body Sways (몸체 스웨이를 이용한 4족 로봇의 걸음새 생성)

  • Jung, Hak-Sang;Kim, Guk-Hwa;Choi, Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.305-311
    • /
    • 2012
  • In this paper, we propose a gait generation method for quadruped robots using the xz-axis sway of the quadruped robot, which minimizes the shake of the quadruped robot and maximizes the stability margin. In the proposed method, the gait is generated based on wave gaits and the stability analysis uses the body tilt information of the quadruped robot according to the leg's height of leg. In addition, to reduce the impact on the body caused by the z-axis sway while walking, the proposed method generates the smooth walking movement trajectory with less impact by using Fourier series. Finally, to verify the applicability and effectiveness of the proposed method, we carry out the computer simulations and the real walking experiments with the implemented quadruped robot.

Field Experiments and Analysis of Drift Characteristics of Small Vessels in the Coastal Region off Busan Port (부산항 연안해역에서의 소형선박 표류 거동특성 관측 및 분석)

  • Kang, Sin-Young;Lee, Mun-Jin
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.221-226
    • /
    • 2002
  • To provide reliable data for drift prediction models, field experiments were carried out in the coastal region off Busan port. Four different size of vessels(10, 30, 50, 90G/T ton) were deployed for the experiment. Among them G/T 50ton class vessel was equipped with instruments measuring the currents, winds, headings and trajectory data. In the rest of vessels only the position data were recorded for the purpose of target divergence study. The trajectories of each vessel were measured by DGPS(Differential Global Positioning System) and collected by APRS(Automatic Position Reporting System). The experiment was done in wind of 2~10m/s and current of 0.5~1.5m/s. The leeway was derived by subtracting surface current velocity from target drifting velocity. The leeway rate of G/T 50ton vessel was found to be about 3.6% and the computed leeway speed equation was $U_L$=0.042 W - 0.034. The processed leeway angle data were deflected by $-30^{\circ}$~$40^{\circ}$ from the direction of ship drift.

Stability Analysis on Guided Munition at Slow Spin (유도포탄 저속 회전 시 안정성 분석)

  • Kim, Youngjoo;Bang, Hyochoong;Seo, Songwon;Pak, Chang-Ho;Kim, Jin-Won;Seo, Ilwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.752-759
    • /
    • 2018
  • This paper presents methods and results of nonlinear simulations for a guided munition for verifying stability at slow spin. The munition is launched by an artillery and it deploys the rear fins to reduce its spin. While the spin speed command is set to 1 rps and 3 rps, wind gusts of 3m/s, 7m/s, 10m/s, and 15m/s in amplitude, and 26 different directions were generated as disturbance for each simulation run. Whereas the munition with the spin speed of 3 rps didn't flip, that with 1-rps spin flipped under some gusts. However, the gusts which increase airspeed in the flight direction didn't introduce harmful effect. Most importantly, all the flips of the munition was observed near the end of the simulation where the munition is going down. No problem was observed near the summit of trajectory.

Modeling and RPY Motion Analysis of Bipedal Walking Robots (이족 로봇의 보행 모델링 및 롤/피치/요 운동 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.353-358
    • /
    • 2011
  • This paper presents a virtual-legged walking model for bipedal robots and analyzes its fundamental RPY(Roll, Pitch, and Yaw) motion effects by simulation. For the purpose of identifying the motion effects of the bipedal walking, we assign some arbitrary trajectories both at the center of mass and at the center of pressure of the robot based on human walking. And then we verify the major moments to the roll, pitch, and yaw directions of the robot. As a result, it is shown that those motions are natural in the process of bipedal walking and they are deeply dependent on the step distance, the vertical level of the center of mass, and the acceleration of the robot. The importance of trajectory planning for the footstep location during a bipedal walking is finally addressed in terms of balance.

Requirement Analysis of Propulsion System for Active Anti-Ship Missile Decoy (능동형 대함 유도탄 기만기의 추진 시스템 요구 조건 분석)

  • Moon, Yongjun;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • An active anti-ship missile decoy system was designed conceptually to analyze propulsion system requirements and feasibility to use a liquid bi-propellant rocket engine. Overall mass, size, and shape were assumed referring to specifications of Nulka which was developed by US and Australia in 1990s. The propulsion system was assumed to be a 1,000 N-class $H_2O_2$/kerosene rocket engine with a pressurized feed system. A three-degree-of-freedom optimal trajectory was calculated based on the assumptions, and mass budget was designed from the calculation results. It was found that the requirements for the propulsion system is that it shall be operated more than 100 sec; it shall be re-ignitable; it shall have a throttle capability of a range from 35% to 100% when the maximum thrust at sea level is 1,000 N.

Appraising the Performance of Construction Projects during Implementation in Kenya, 1963-2018: A Literature Review Perspective

  • Ong'ondo, Cyrus Babu;Gwaya, Abednego Oswald;Masu, Sylvester
    • Journal of Construction Engineering and Project Management
    • /
    • v.9 no.2
    • /
    • pp.1-24
    • /
    • 2019
  • Poor project performance has been noted as the bane in the construction industry globally. This paper sought to investigate, by way of literature, the performance patterns of construction projects in Kenya since independence (1963-2018). This was informed by reports of undesirable project performance in the industry. This descriptive study used available studies previously done in this subject area. In sum, literature is replete with evidence on a myriad of challenges facing the execution of projects. The study established that generally, the project performance is poor and has assumed a chronic trajectory spanning over five decades. On average, the findings reveal that 35-60% of projects initiated in Kenya face cost overruns while time overrun is most severe with 35-73% projects overrunning their schedule. In addition, the findings problematize the issue of plurality of performance measurement regimes in the construction industry. Here, it was observed that no singular construct exists to objectively measure the various facets that constitute the 'health' of a project. This paper has contributed to the body of knowledge by examining the performance patterns in Kenya for over fifty years while at the same time identifying the bottlenecks inherent in projects execution. Importantly, the conceptual performance efficiency framework derived in the current study presents a paradigm shift in the monitoring and evaluation of projects. To this end, an in-depth analysis is recommended on the interaction of efficiency enablers in the buildup of performance efficiency index (PEI). Similarly, a further inquiry is recommended on the integration and impact of the proposed framework in the management of projects.

Operational Characteristics of a Domestic Commercial Semi-automatic Vegetable Transplanter (상용 국산 반자동 채소 정식기의 작동 특성 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.127-138
    • /
    • 2018
  • In this study, the operational characteristics of a domestic vegetable transplanter were investigated. The main functional components and power path of the tranplanter were analyzed. The link structure of transplanting device waskinematically analyzed, and 3D modeling and dynamic simulation were performed. Based on this analysis, the trajectory of the bottom end of the transplanting hopper was analyzed. Also, the plant spacing according to the engine speed and the shifting stage of transplanting transmission was analyzed and verified by field test. As main results of this study, the transplanting device is one degree of freedom(DOF) 4-bar link type mechanism which comprises 10 links and 13 rotating joints. The transplanting hopper plants seedlings in a vertical direction while maintaining a constant posture by the links of transplanting device. The power is transmitted to both the driving part and transplanting part from the engine, and the maximum and minimum plant spacing of the transplanting device were 428.97 mm and 261.20 mm.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Computer-based clinical coding activity analysis for neurosurgical terms

  • Lee, Jong Hyuk;Lee, Jung Hwan;Ryu, Wooseok;Choi, Byung Kwan;Han, In Ho;Lee, Chang Min
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.3
    • /
    • pp.225-230
    • /
    • 2019
  • Background: It is not possible to measure how much activity is required to understand and code a medical data. We introduce an assessment method in clinical coding, and applied this method to neurosurgical terms. Methods: Coding activity consists of two stages. At first, the coders need to understand a presented medical term (informational activity). The second coding stage is about a navigating terminology browser to find a code that matches the concept (code-matching activity). Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) was used for the coding system. A new computer application to record the trajectory of the computer mouse and record the usage time was programmed. Using this application, we measured the time that was spent. A senior neurosurgeon who has studied SNOMED CT has analyzed the accuracy of the input coding. This method was tested by five neurosurgical residents (NSRs) and five medical record administrators (MRAs), and 20 neurosurgical terms were used. Results: The mean accuracy of the NSR group was 89.33%, and the mean accuracy of the MRA group was 80% (p=0.024). The mean duration for total coding of the NSR group was 158.47 seconds, and the mean duration for total coding of the MRA group was 271.75 seconds (p=0.003). Conclusion: We proposed a method to analyze the clinical coding process. Through this method, it was possible to accurately calculate the time required for the coding. In neurosurgical terms, NSRs had shorter time to complete the coding and higher accuracy than MRAs.

Analysis of the behavior of gray rockfish (Sebastes schlegelii Hilgendorf) on the construction of wind power generators in the sea area around Byeonsan Peninsula, Korea (변산반도 주변해역에서 풍력발전기 건설공사에 대한 조피볼락(Sebastes schlegelii Hilgendorf )의 행동분석)

  • HEO, Gyeom;HWANG, Doo-Jin;MIN, Eun-Bi;OH, Sung-Yong;PARK, Jin Woo;SHIN, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.129-137
    • /
    • 2019
  • This study was conducted to investigate the effects of underwater noise caused by pile driving during marine construction on fish. In this study, the three gray rockfish were released about 1 km away from the construction site of wind power generation on July 18, 2018 and traced using two acoustic telemetry techniques. The behavior of the fish was analyzed by calculating the moving distance, swimming speed and direction of the gray rockfish. In the results of the acoustic tracking using the ship, the rockfish moved about 2.11 km for about two hours at a speed of $0.28{\pm}0.14m/s$ (0.94 TL/s). The bottom depth of the trajectory of the rockfish was $1.0{\pm}0.6m$ on average. There was a significant directionality in swimming direction of the gray rockfish, and there was no significant correlation between the swimming direction and tidal current direction. Moving distance during 5 minutes (5MD) during pile driving and finishing operations between rock surface and bedrock were 0.94-0.96 times (76.0-77.0 m) and 1.81-2.73 times (146.0-219.5 m), respectively, compared with no pile driving. This study is expected to be used as a basic data of fish behavior research on underwater noise.