• 제목/요약/키워드: Training signal

Search Result 505, Processing Time 0.023 seconds

Natural Object Recognition for Augmented Reality Applications (증강현실 응용을 위한 자연 물체 인식)

  • Anjan, Kumar Paul;Mohammad, Khairul Islam;Min, Jae-Hong;Kim, Young-Bum;Baek, Joong-Hwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Markerless augmented reality system must have the capability to recognize and match natural objects both in indoor and outdoor environment. In this paper, a novel approach is proposed for extracting features and recognizing natural objects using visual descriptors and codebooks. Since the augmented reality applications are sensitive to speed of operation and real time performance, our work mainly focused on recognition of multi-class natural objects and reduce the computing time for classification and feature extraction. SIFT(scale invariant feature transforms) and SURF(speeded up robust feature) are used to extract features from natural objects during training and testing, and their performance is compared. Then we form visual codebook from the high dimensional feature vectors using clustering algorithm and recognize the objects using naive Bayes classifier.

Classification of Environmentally Distorted Acoustic Signals in Shallow Water Using Neural Networks : Application to Simulated and Measured Signal

  • Na, Young-Nam;Park, Joung-Soo;Chang, Duck-Hong;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.54-65
    • /
    • 1998
  • This study attempts to test the classifying performance of a neural network and thereby examine its applicability to the signals distorted in a shallow water environment. Linear frequency modulated(LFM) signals are simulated by using an acoustic model and also measured through sea experiment. The network is constructed to have three layers and trained on both data sets. To get normalized power spectra as feature vectors, the study considers the three transforms : shot-time Fourier transform (STFT), wavelet transform (WT) and pseudo Wigner-Ville distribution (PWVD). After trained on the simulated signals over water depth, the network gives over 95% performance with the signal to noise ratio (SNR) being up to-10 dB. Among the transforms, the PWVD presents the best performance particularly in a highly noisy condition. The network performs worse with the summer sound speed profile than with the winter profile. It is also expected to present much different performance by the variation of bottom property. When the network is trained on the measured signals, it gives a little better results than that trained on the simulated data. In conclusion, the simulated signals are successfully applied to training a network, and the trained network performs well in classifying the signals distorted by a surrounding environment and corrupted by noise.

  • PDF

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

A Study on the Effective Channel Estimation Method in OFDM Based WLAN (OFDM 기반 WLAN 수신기에서 효율적인 채널추정 기법에 관한 연구)

  • Jeon Hyoung-Goo;Choi Won-Chul;Lee Hyun;Oh Hyun-Seo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.57-62
    • /
    • 2005
  • In this paper, we propose a channel estimation method by impulse signal train in OFDM. In order to estimate the channel response, 4 impulse signals are generated and transmitted during one OFDM (Orthogonal Frequency Division Multiplexing) symbol. The intervals between the impulse signals are all equal in time domain. At the receiver, the impulse response signals are summed and averaged. And then, the averaged impulse response signal is zero padded and fast Fourier transformed to obtain the channel estimation. The BER performance of the proposed method is compared with those of conventional estimation method using the long training sequence in fast fading environments. The simulation results show that the proposed method improves by 3 dB in terms of Eb/No, compared with the conventional method.

  • PDF

Emotion Recognition of Low Resource (Sindhi) Language Using Machine Learning

  • Ahmed, Tanveer;Memon, Sajjad Ali;Hussain, Saqib;Tanwani, Amer;Sadat, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.369-376
    • /
    • 2021
  • One of the most active areas of research in the field of affective computing and signal processing is emotion recognition. This paper proposes emotion recognition of low-resource (Sindhi) language. This work's uniqueness is that it examines the emotions of languages for which there is currently no publicly accessible dataset. The proposed effort has provided a dataset named MAVDESS (Mehran Audio-Visual Dataset Mehran Audio-Visual Database of Emotional Speech in Sindhi) for the academic community of a significant Sindhi language that is mainly spoken in Pakistan; however, no generic data for such languages is accessible in machine learning except few. Furthermore, the analysis of various emotions of Sindhi language in MAVDESS has been carried out to annotate the emotions using line features such as pitch, volume, and base, as well as toolkits such as OpenSmile, Scikit-Learn, and some important classification schemes such as LR, SVC, DT, and KNN, which will be further classified and computed to the machine via Python language for training a machine. Meanwhile, the dataset can be accessed in future via https://doi.org/10.5281/zenodo.5213073.

Comparison of EEG Topography Labeling and Annotation Labeling Techniques for EEG-based Emotion Recognition (EEG 기반 감정인식을 위한 주석 레이블링과 EEG Topography 레이블링 기법의 비교 고찰)

  • Ryu, Je-Woo;Hwang, Woo-Hyun;Kim, Deok-Hwan
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.16-24
    • /
    • 2019
  • Recently, research on emotion recognition based on EEG has attracted great interest from human-robot interaction field. In this paper, we propose a method of labeling using image-based EEG topography instead of evaluating emotions through self-assessment and annotation labeling methods used in MAHNOB HCI. The proposed method evaluates the emotion by machine learning model that learned EEG signal transformed into topographical image. In the experiments using MAHNOB-HCI database, we compared the performance of training EEG topography labeling models of SVM and kNN. The accuracy of the proposed method was 54.2% in SVM and 57.7% in kNN.

Crashes and Traffic Signal Violations Caused by Commercial Motorcycle Couriers

  • Shin, Dong Seok;Byun, Jong Han;Jeong, Byung Yong
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.213-218
    • /
    • 2019
  • Background: Motorcycles are one of the important members of commercial transportation because of the convenient use during congested traffic conditions and the ease of parking in narrow streets. This study investigates the characteristics of crashes and traffic signal violations caused by motorcycle couriers. Methods: From the national compensation data, this study analyzed the traffic crashes caused by 671 motorcycle couriers. Results: Among 671 injured couriers, 50.6% were aged less than 40 years, 49.2% run in a small business of <5 employees, and 47.2% had work experience of <6 months. Motorcycle crashes occurred mainly due to "rider overturned alone" (67.5%), in the daytime (73.5%), or on cloudy or clear days (77.2%). However, the violation rate caused by motorcycle couriers was high in couriers in a small business of <5 employees (13.9%), with work experience of <6 months (13.9%), on cloudy or clear days (12.4%), on an intersection (29.8%), in the type of "crash with a vehicle" (31.2%), or in a death accident (35.7%) Conclusion: The findings of this study can be used as a baseline in devising policies for preventing crashes of motorcycle couriers.

Development of training-education system for early childhood and adolescence (청소년의 인지능력 훈련을 위한 운동-학습 시스템의 개발)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Yoon, Ji-Sook;Seo, Jae-Yong;Pakr, Chan-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.107-112
    • /
    • 2020
  • With the importance of creative learning highly valued, the demand for education in early childhood and adolescence has been increasing in recent years, but simple memorization-oriented and classical teaching methods tend not to prove high effectiveness in terms of learner-centeredness. Students who study static at their desks for a long time do not prefer boring classical learning methods, and there is also a lack of educational methods and educational content that conforms to the convergence education trend in the actual educational field. Therefore, this study has created a system that allows students to exercise and learn at the same time through a fun and familiar approach, and implement educational content through activation of brain plasticity.

Bolt looseness detection and localization using time reversal signal and neural network techniques

  • Duan, Yuanfeng;Sui, Xiaodong;Tang, Zhifeng;Yun, Chungbang
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.397-410
    • /
    • 2022
  • It is essential to monitor the working conditions of bolt-connected joints, which are widely used in various kinds of steel structures. The looseness of bolts may directly affect the stability and safety of the entire structure. In this study, a guided wave-based method for bolt looseness detection and localization is presented for a joint structure with multiple bolts. SH waves generated and received by a small number (two pairs) of magnetostrictive transducers were used. The bolt looseness index was proposed based on the changes in the reconstructed responses excited by the time reversal signals of the measured unit impulse responses. The damage locations and local damage severities were estimated using the damage indices from several wave propagation paths. The back propagation neural network (BPNN) technique was employed to identify the local damages. Numerical and experimental studies were conducted on a lap joint with eight bolts. The results show that the total damage severity can be successfully detected under the effect of external force and measurement noise. The local damage severity can be estimated reasonably for the experimental data using the BPNN constructed by the training patterns generated from the finite element simulations.

Tracking of ARPA Radar Signals Based on UK-PDAF and Fusion with AIS Data

  • Chan Woo Han;Sung Wook Lee;Eun Seok Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.38-48
    • /
    • 2023
  • To maintain the existing systems of ships and introduce autonomous operation technology, it is necessary to improve situational awareness through the sensor fusion of the automatic identification system (AIS) and automatic radar plotting aid (ARPA), which are installed sensors. This study proposes an algorithm for determining whether AIS and ARPA signals are sent to the same ship in real time. To minimize the number of errors caused by the time series and abnormal phenomena of heterogeneous signals, a tracking method based on the combination of the unscented Kalman filter and probabilistic data association filter is performed on ARPA radar signals, and a position prediction method is applied to AIS signals. Especially, the proposed algorithm determines whether the signal is for the same vessel by comparing motion-related components among data of heterogeneous signals to which the corresponding method is applied. Finally, a measurement test is conducted on a training ship. In this process, the proposed algorithm is validated using the AIS and ARPA signal data received by the voyage data recorder for the same ship. In addition, the proposed algorithm is verified by comparing the test results with those obtained from raw data. Therefore, it is recommended to use a sensor fusion algorithm that considers the characteristics of sensors to improve the situational awareness accuracy of existing ship systems.