• Title/Summary/Keyword: Training set

Search Result 1,600, Processing Time 0.03 seconds

Local Block Learning based Super resolution for license plate (번호판 화질 개선을 위한 국부 블록 학습 기반의 초해상도 복원 알고리즘)

  • Shin, Hyun-Hak;Chung, Dae-Sung;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper, we propose a learning based super resolution algorithm using local block for image enhancement of vehicle license plate. Local block is defined as the minimum measure of block size containing the associative information in the image. Proposed method essentially generates appropriate local block sets suitable for various imaging conditions. In particular, local block training set is first constructed as ordered pair between high resolution local block and low resolution local block. We then generate low resolution local block training set of various size and blur conditions for matching to all possible blur condition of vehicle license plates. Finally, we perform association and merging of information to reconstruct into enhanced form of image from training local block sets. Representative experiments demonstrate the effectiveness of the proposed algorithm.

Hyper-Rectangle Based Prototype Selection Algorithm Preserving Class Regions (클래스 영역을 보존하는 초월 사각형에 의한 프로토타입 선택 알고리즘)

  • Baek, Byunghyun;Euh, Seongyul;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.83-90
    • /
    • 2020
  • Prototype selection offers the advantage of ensuring low learning time and storage space by selecting the minimum data representative of in-class partitions from the training data. This paper designs a new training data generation method using hyper-rectangles that can be applied to general classification algorithms. Hyper-rectangular regions do not contain different class data and divide the same class space. The median value of the data within a hyper-rectangle is selected as a prototype to form new training data, and the size of the hyper-rectangle is adjusted to reflect the data distribution in the class area. A set cover optimization algorithm is proposed to select the minimum prototype set that represents the whole training data. The proposed method reduces the time complexity that requires the polynomial time of the set cover optimization algorithm by using the greedy algorithm and the distance equation without multiplication. In experimented comparison with hyper-sphere prototype selections, the proposed method is superior in terms of prototype rate and generalization performance.

A Combined Multiple Regression Trees Predictor for Screening Large Chemical Databases (대용량 화학 데이터 베이스를 선별하기위한 결합다중회귀나무 예측치)

  • 임용빈;이소영;정종희
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.91-101
    • /
    • 2001
  • It has been shown that the multiple trees predictors are more accurate in reducing test set error than a single tree predictor. There are two ways of generating multiple trees. One is to generate modified training sets by resampling the original training set, and then construct trees. It is known that arcing algorithm is efficient. The other is to perturb randomly the working split at each node from a list of best splits, which is expected to generate reasonably good trees for the original training set. We propose a new combined multiple regression trees predictor which uses the latter multiple regression tree predictor as a predictor based on a modified training set at each stage of arcing. The efficiency of those prediction methods are compared by applying to high throughput screening of chemical compounds for biological effects.

  • PDF

A Comparative Study on the Event-Retrieval Performances of Event Tracking and Information Filtering (사건트래킹과 정보필터링 기법의 사건검색 성능 비교연구)

  • Chung, Young-Mee;Chang, Ji-Eun
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.3
    • /
    • pp.111-127
    • /
    • 2003
  • The purpose of this study is to ascertain whether event tracking is more effective in event retrieval than information filtering. This study examined the two techniques for event retrieval to suggest the more effective one. The event-retrieval performances of the event tracking technique based on a kNN classifier and the query-based information filtering technique were compared. Two event tracking experiments, one with the static training set and the other with the dynamic training set , were carried out. Two information filtering experiments, one with initial queries and the other with refined queries, were also carried out to evaluate the event-retrieval effectiveness. We found that the event tracking technique with the static training set performed better than on with the dynamic training set. It was also found that the information fitering technique using intial queries performed better than one using the refined queries. In conclusion, the comparison of the best cases of event tracking and information filtering revealed that the information filtering technique outperformed the event tracking technique in event retrieval.

The Effect of the Quality of Pre-Assigned Subject Categories on the Text Categorization Performance (학습문헌집합에 기 부여된 범주의 정확성과 문헌 범주화 성능)

  • Shim, Kyung;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.2
    • /
    • pp.265-285
    • /
    • 2006
  • In text categorization a certain level of correctness of labels assigned to training documents is assumed without solid knowledge on that of real-world collections. Our research attempts to explore the quality of pre-assigned subject categories in a real-world collection, and to identify the relationship between the quality of category assignment in training set and text categorization performance. Particularly, we are interested in to what extent the performance can be improved by enhancing the quality (i.e., correctness) of category assignment in training documents. A collection of 1,150 abstracts in computer science is re-classified by an expert group, and divided into 907 training documents and 227 test documents (15 duplicates are removed). The performances of before and after re-classification groups, called Initial set and Recat-1/Recat-2 sets respectively, are compared using a kNN classifier. The average correctness of subject categories in the Initial set is 16%, and the categorization performance with the Initial set shows 17% in $F_1$ value. On the other hand, the Recat-1 set scores $F_1$ value of 61%, which is 3.6 times higher than that of the Initial set.

The Effects of the Intensity of Combined Training on Body Composition, HOMA-IR and HbA1c of Female Students of a Boarding High School (복합운동 강도가 기숙형학교 여고생의 신체조성, HOMA-IR 및 HbA1c에 미치는 영향)

  • Kwon, Sun-Ok;Jeong, Seon-Tae
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.124-132
    • /
    • 2010
  • Among students of 'K' boarding high school, located in 'B' city, 32 students whose % body fat was 30% or above were divided into three groups - two exercise groups and one control group. They performed Combined Training - a mix of weight training (WT) and step box training (SBT) - for 65 min a day, 3 days a week, for 8 weeks in total. Group A performed WT 70-80%$RM{\times}3$ sets+SBT (RPE 11-13)${\times}1$ set, and group B performed WT 70-80%$RM{\times}1$ set+SBT (RPE 11-13)${\times}3$ sets to yield data on changes of body composition (Soft Lean Mass, SLM), %fat, WHR), HbA1c, and HOMA-IR. Paired t-test was used to process data within each group. Pre- and post experiment differences rates (%diff) were used to perform one-way ANOVA (Duncan test) for group comparisons. The conclusions derived are as follows. Regarding body composition, exercise groups showed an increase in SLM, but there was no such change in the control group. WHR decreased in group A, but increased in the control group. The % body fat decreased in both exercise groups, but increased in the control group. As for the group comparisons, SLM in group A showed a greater increase than in group B and the control group. WHR in groups A and B showed a greater decrease than the control group. The % body fat in groups A and B showed a greater decrease than the control group. The exercise groups showed a significant decrease in HOMA-IR, but the control group showed a significant increase in HOMA-IR. As for the group comparisons, groups A and B showed a greater decrease in HOMA-IR than the control group. The exercise groups showed a significant decrease in HbA1c, however, the control group showed no change in HbA1c. As for the group comparisons, group A showed a greater decrease in HbA1c than the control group. These results confirm that combined training is more effective in improving body composition and metabolic factors when it includes a high proportion of resistance training, rather than aerobic exercise. The results of the study suggest that it is advisable to set a high proportion of WT when deciding the intensity of combined training.

Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network (YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향)

  • Wang, Xufei;Chen, Le;Li, Qiutan;Son, Jinku;Ding, Xilong;Song, Jeongyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.157-165
    • /
    • 2020
  • Aiming at the development of neural network and self-driving data set, it is also an idea to improve the performance of network model to detect moving objects by dividing the data set. In Darknet network framework, the YOLOv4 (You Only Look Once v4) network model was used to train and test Udacity data set. According to 7 proportions of the Udacity data set, it was divided into three subsets including training set, validation set and test set. K-means++ algorithm was used to conduct dimensional clustering of object boxes in 7 groups. By adjusting the super parameters of YOLOv4 network for training, Optimal model parameters for 7 groups were obtained respectively. These model parameters were used to detect and compare 7 test sets respectively. The experimental results showed that YOLOv4 can effectively detect the large, medium and small moving objects represented by Truck, Car and Pedestrian in the Udacity data set. When the ratio of training set, validation set and test set is 7:1.5:1.5, the optimal model parameters of the YOLOv4 have highest detection performance. The values show mAP50 reaching 80.89%, mAP75 reaching 47.08%, and the detection speed reaching 10.56 FPS.

Face Detection Based on Incremental Learning from Very Large Size Training Data (대용량 훈련 데이타의 점진적 학습에 기반한 얼굴 검출 방법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.949-958
    • /
    • 2004
  • race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.

Survey on the status of integrated science education in middle school (통합과학교육의 실태조사)

  • Lee, Hack-Dong
    • Journal of The Korean Association For Science Education
    • /
    • v.6 no.2
    • /
    • pp.43-52
    • /
    • 1986
  • It is the purpose at thus survey to get hold at problems in teaching integrated science in middle school. For this purpose, problems and suggestions were collected by questionnaire which were made out by middle school science teachers. Through the analysis of the questionnaire, it was found that the present curriculum of science education in the college of education and the in-service training program were not suitable for training middle school science teacher. Form the results of the analysis, this survey concluded that the curriculum and program mentioned above need improvement as follows. (1) science education curriculum in the college of education should be set up with two part. One is the part that middle school science teachers are trained and the other is the part that high school science teachers are trained. (2) In-service training program should be set off into two kinds. One is the program that middle school science teachers are trained and the other program that high school science teachers are trained.

  • PDF

The Study on the Effective Automatic Classification of Internet Document Using the Machine Learning (기계학습을 기반으로 한 인터넷 학술문서의 효과적 자동분류에 관한 연구)

  • 노영희
    • Journal of Korean Library and Information Science Society
    • /
    • v.32 no.3
    • /
    • pp.307-330
    • /
    • 2001
  • This study experimented the performance of categorization methods using the kNN classifier. Most sample based automatic text categorization techniques like the kNN classifier reduces the feature set of the training documents. We sought to find out which percentage reductions in the feature set would result in high performances. In addition, the kNN classifier has to find the k number of training documents most similar to the test documents in the training documents. We sought to verify the most appropriate k value through experiments.

  • PDF