• Title/Summary/Keyword: Training parameter

Search Result 394, Processing Time 0.034 seconds

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

A Study on Multi-Object Data Split Technique for Deep Learning Model Efficiency (딥러닝 효율화를 위한 다중 객체 데이터 분할 학습 기법)

  • Jong-Ho Na;Jun-Ho Gong;Hyu-Soung Shin;Il-Dong Yun
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.218-230
    • /
    • 2024
  • Recently, many studies have been conducted for safety management in construction sites by incorporating computer vision. Anchor box parameters are used in state-of-the-art deep learning-based object detection and segmentation, and the optimized parameters are critical in the training process to ensure consistent accuracy. Those parameters are generally tuned by fixing the shape and size by the user's heuristic method, and a single parameter controls the training rate in the model. However, the anchor box parameters are sensitive depending on the type of object and the size of the object, and as the number of training data increases. There is a limit to reflecting all the characteristics of the training data with a single parameter. Therefore, this paper suggests a method of applying multiple parameters optimized through data split to solve the above-mentioned problem. Criteria for efficiently segmenting integrated training data according to object size, number of objects, and shape of objects were established, and the effectiveness of the proposed data split method was verified through a comparative study of conventional scheme and proposed methods.

Supervised Competitive Learning Neural Network with Flexible Output Layer

  • Cho, Seong-won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.675-679
    • /
    • 2001
  • In this paper, we present a new competitive learning algorithm called Dynamic Competitive Learning (DCL). DCL is a supervised learning method that dynamically generates output neurons and initializes automatically the weight vectors from training patterns. It introduces a new parameter called LOG (Limit of Grade) to decide whether an output neuron is created or not. If the class of at least one among the LOG number of nearest output neurons is the same as the class of the present training pattern, then DCL adjusts the weight vector associated with the output neuron to learn the pattern. If the classes of all the nearest output neurons are different from the class of the training pattern, a new output neuron is created and the given training pattern is used to initialize the weight vector of the created neuron. The proposed method is significantly different from the previous competitive learning algorithms in the point that the selected neuron for learning is not limited only to the winner and the output neurons are dynamically generated during the learning process. In addition, the proposed algorithm has a small number of parameters, which are easy to be determined and applied to real-world problems. Experimental results for pattern recognition of remote sensing data and handwritten numeral data indicate the superiority of DCL in comparison to the conventional competitive learning methods.

  • PDF

A Study on the Method to Treat Carrier Frequency Offset for VDES Receiver (VDES 수신기를 위한 주파수 옵셋 처리 방안 연구)

  • Ryu, Hyeong-Jik;Kim, Hye-Jin;Kim, Won-Yong;Park, Gae-Myeong;Kim, Jun-Tae;Yoo, Jin-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.310-312
    • /
    • 2018
  • In this paper, We stduy addtional consideration and method to treat carrier frquency offset on defined system parameter & requirements in IALA G1139, previous studied consecutively. We studied the method to treat carrier frequency offset by extending length of training symbol and by differential modulation. This study will publish and argue in IALA ENAV22. We will decide a method to treat carrier frequency offset from result of IALA ENAV22.

  • PDF

A Training Method for Emotion Recognition using Emotional Adaptation (감정 적응을 이용한 감정 인식 학습 방법)

  • Kim, Weon-Goo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.998-1003
    • /
    • 2020
  • In this paper, an emotion training method using emotional adaptation is proposed to improve the performance of the existing emotion recognition system. For emotion adaptation, an emotion speech model was created from a speech model without emotion using a small number of training emotion voices and emotion adaptation methods. This method showed superior performance even when using a smaller number of emotional voices than the existing method. Since it is not easy to obtain enough emotional voices for training, it is very practical to use a small number of emotional voices in real situations. In the experimental results using a Korean database containing four emotions, the proposed method using emotional adaptation showed better performance than the existing method.

Effect of Change in Degrees of Inclination during Treadmill Gait Training on EEG of Stroke Patients (경사도 각도에 따른 트레드밀 보행훈련 시 뇌졸중 환자의 뇌파에 미치는 영향)

  • Sun-Min Kim;Dong-Hoon Kim;Sang-Hun Jang
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.139-149
    • /
    • 2024
  • Purpose: This study aimed to investigate the effects of gradually increasing treadmill inclination on the electroencephalogram (EEG) of stroke patients during gait training. Methods: Three stroke patients who were diagnosed with stroke within six months and capable of walking on a treadmill were selected as subjects. EEG electrodes were attached at Fp1, Fp2, F3, F4, C3, C4, P3, and P4 positions of the cerebral hemispheres using the International 10-20 system. The intervention involved walking for 2 minutes each at 0 degrees, 15 degrees, and 30 degrees inclination on the treadmill while focusing on a target point located in front during the treadmill gait training. The EEG (Smartingmobi, Serbia) generated when the treadmill gradient gradually increased was measured. In addition, relative alpha and relative beta waves were visualized through the Brain mapping program in the TeleScan program to assess the changes in each brain region for the activity of the EEG. Results: The relative alpha wave value decreased as treadmill inclination increased, while the relative beta wave value increased. Conclusion: Gradually increasing the inclination during treadmill gait training appears to be a crucial parameter for increasing the brain activity levels of stroke patients.

Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network

  • Rao, Zheheng;Zeng, Chunyan;Wu, Minghu;Wang, Zhifeng;Zhao, Nan;Liu, Min;Wan, Xiangkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.413-435
    • /
    • 2018
  • Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.

A Study on a Mask R-CNN-Based Diagnostic System Measuring DDH Angles on Ultrasound Scans (다중 트레이닝 기법을 이용한 MASK R-CNN의 초음파 DDH 각도 측정 진단 시스템 연구)

  • Hwang, Seok-Min;Lee, Si-Wook;Lee, Jong-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.183-194
    • /
    • 2020
  • Recently, the number of hip dysplasia (DDH) that occurs during infant and child growth has been increasing. DDH should be detected and treated as early as possible because it hinders infant growth and causes many other side effects In this study, two modelling techniques were used for multiple training techniques. Based on the results after the first transformation, the training was designed to be possible even with a small amount of data. The vertical flip, rotation, width and height shift functions were used to improve the efficiency of the model. Adam optimization was applied for parameter learning with the learning parameter initially set at 2.0 x 10e-4. Training was stopped when the validation loss was at the minimum. respectively A novel image overlay system using 3D laser scanner and a non-rigid registration method is implemented and its accuracy is evaluated. By using the proposed system, we successfully related the preoperative images with an open organ in the operating room

Speech/Music Discrimination Using Spectrum Analysis and Neural Network (스펙트럼 분석과 신경망을 이용한 음성/음악 분류)

  • Keum, Ji-Soo;Lim, Sung-Kil;Lee, Hyon-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.207-213
    • /
    • 2007
  • In this research, we propose an efficient Speech/Music discrimination method that uses spectrum analysis and neural network. The proposed method extracts the duration feature parameter(MSDF) from a spectral peak track by analyzing the spectrum, and it was used as a feature for Speech/Music discriminator combined with the MFSC. The neural network was used as a Speech/Music discriminator, and we have reformed various experiments to evaluate the proposed method according to the training pattern selection, size and neural network architecture. From the results of Speech/Music discrimination, we found performance improvement and stability according to the training pattern selection and model composition in comparison to previous method. The MSDF and MFSC are used as a feature parameter which is over 50 seconds of training pattern, a discrimination rate of 94.97% for speech and 92.38% for music. Finally, we have achieved performance improvement 1.25% for speech and 1.69% for music compares to the use of MFSC.

Comparing Classification Accuracy of Ensemble and Clustering Algorithms Based on Taguchi Design (다구찌 디자인을 이용한 앙상블 및 군집분석 분류 성능 비교)

  • Shin, Hyung-Won;Sohn, So-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.47-53
    • /
    • 2001
  • In this paper, we compare the classification performances of both ensemble and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. In view of the unknown relationship between input and output function, we use a Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: When the level of the variance is medium, Bagging & Parameter Combining performs worse than Logistic Regression, Variable Selection Bagging and Clustering. However, classification performances of Logistic Regression, Variable Selection Bagging, Bagging and Clustering are not significantly different when the variance of input data is either small or large. When there is strong correlation in input variables, Variable Selection Bagging outperforms both Logistic Regression and Parameter combining. In general, Parameter Combining algorithm appears to be the worst at our disappointment.

  • PDF