• 제목/요약/키워드: Training intelligence

검색결과 782건 처리시간 0.032초

U-Net 모델에 기반한 기간별 추출 소나무 고사목 데이터를 이용한 정사영상 탐지 정밀도 향상 연구 (A Study on Orthogonal Image Detection Precision Improvement Using Data of Dead Pine Trees Extracted by Period Based on U-Net model)

  • 김성훈;권기욱;김준현
    • 한국측량학회지
    • /
    • 제40권4호
    • /
    • pp.251-260
    • /
    • 2022
  • 소나무 재선충 피해나무는 줄어들고 있으나, 피해 지역은 전국으로 확대되고 있다. 최근에 딥러닝 기술이 발전하면서 소나무재선충 고사목 탐지 연구에 적용이 빠르게 시도되고 있다. 본 연구의 목적은 딥러닝 학습데이터의 효과적인 취득과 정확한 참값을 확보하고, 학습을 통해 U-Net 모델의 탐지능력을 보다 향상시키기 위함이다. 이러한 목적달성을 위해 단계별 딥러닝 알고리즘을 적용한 필터링 방법을 이용하여 딥러닝 모델의 불명확한 분석 근거를 최소화하고, 효율적인 분석 및 판단을 할 수 있도록 하였다. 분석결과 U-Net알고리즘을 이용한 소나무재선충 고사목 탐지 및 성능향상에 있어 기간별로 분석한 참값을 이용한 U-Net 모델이 기존에 제공하였던 참값을 이용한 U-Net 모델보다 재현율(Recall)은 -0.5%p, 정밀도(Precision)은 7.6%p, F-1 score는 4.1%p로 분석되었다. 향후 다양한 필터링 기법을 적용하여 재선충 탐지 정밀도를 높일 수 있는 가능성이 있을 것으로 판단되며, 드론 정사영상과 인공지능을 이용한 드론 예찰방법이 소나무재선충 방제 사업에 활용 가능할 것으로 판단된다.

전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가 (Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images)

  • 김성민;이승완
    • 한국방사선학회논문지
    • /
    • 제16권1호
    • /
    • pp.25-34
    • /
    • 2022
  • 뇌 전산화단층촬영은 비침습성, 3차원 영상 제공, 저방사선량 등의 장점 때문에 뇌출혈과 같은 질병 진단을 위해 시행된다. 하지만 뇌 전산화단층영상 판독을 위한 전문의의 인력 공급 부족 및 막대한 업무량으로 인해 수많은 판독 오류 및 오진이 발생하고 있다. 이와 같은 문제를 해결하기 위해 객체 검출을 위한 다양한 인공지능 기술이 개발되고 있다. 본 연구에서는 뇌 전산화단층영상으로부터 뇌출혈 검출을 위한 딥러닝 기반 YOLOv5s 모델의 적용 가능성을 확인하였다. 또한 YOLOv5s 모델 학습 시 초매개변수를 변화시켜 학습된 모델의 성능을 평가하였다. YOLOv5s 모델은 backbone, neck 및 output 모듈로 구성하였고, 입력 CT 영상 내 뇌출혈로 의심되는 부위를 검출하여 출력할 수 있도록 하였다. YOLOv5s 모델 학습 시 활성화함수, 최적화함수, 손실함수 및 학습 횟수를 변화시켰고, 학습된 모델의 뇌출혈 검출 정확도 및 학습 시간을 측정하였다. 연구결과 학습된 YOLOv5s 모델은 뇌출혈로 의심되는 부위에 대한 경계 박스 및 해당 경계박스에 대한 정확도를 출력할 수 있음을 확인하였다. Mish 활성화함수, stochastic gradient descent 최적화함수 및 completed intersection over union 손실함수 적용 시 YOLOv5s 모델의 뇌출혈 검출 정확도 향상 및 학습 시간이 단축되는 결과를 확인하였다. 또한 YOLOv5s 모델의 뇌출혈 검출 정확도 및 학습 시간은 학습 횟수에 비례하여 증가하는 결과를 확인하였다. 따라서 YOLOv5s 모델은 뇌 전산화단층영상을 이용한 뇌출혈 검출을 위해 활용할 수 있으며, 최적의 초매개변수 적용을 통해 성능을 향상 시킬 수 있다.

언어모델을 활용한 콘텐츠 메타 데이터 기반 유사 콘텐츠 추천 모델 (Similar Contents Recommendation Model Based On Contents Meta Data Using Language Model)

  • 김동환
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.27-40
    • /
    • 2023
  • 스마트 기기의 보급률 증가와 더불어 코로나의 영향으로 스마트 기기를 통한 미디어 콘텐츠의 소비가 크게 늘어나고 있다. 이러한 추세와 더불어 OTT 플랫폼을 통한 미디어 콘텐츠의 시청과 콘텐츠의 양이 늘어나고 있어서 해당 플랫폼에서의 콘텐츠 추천이 중요해지고 있다. 콘텐츠 기반 추천 관련 기존 연구들은 콘텐츠의 특징을 가리키는 메타 데이터를 활용하는 경우가 대부분이었고 콘텐츠 자체의 내용적인 메타 데이터를 활용하는 경우는 부족한 상황이다. 이에 따라 본 논문은 콘텐츠의 내용적인 부분을 설명하는 제목과 시놉시스를 포함한 다양한 텍스트 데이터를 바탕으로 유사한 콘텐츠를 추천하고자 하였다. 텍스트 데이터를 학습하기 위한 모델은 한국어 언어모델 중에 성능이 우수한 KLUE-RoBERTa-large를 활용하였다. 학습 데이터는 콘텐츠 제목, 시놉시스, 복합 장르, 감독, 배우, 해시 태그 정보를 포함하는 2만여건의 콘텐츠 메타 데이터를 사용하였으며 정형 데이터로 구분되어 있는 여러 텍스트 피처를 입력하기 위해 해당 피처를 가리키는 스페셜 토큰으로 텍스트 피처들을 이어붙여서 언어모델에 입력하였다. 콘텐츠들 간에 3자 비교를 하는 방식과 테스트셋 레이블링에 다중 검수를 적용하여 모델의 유사도 분류 능력을 점검하는 테스트셋의 상대성과 객관성을 도모하였다. 콘텐츠 메타 텍스트 데이터에 대한 임베딩을 파인튜닝 학습하기 위해 장르 분류와 해시태그 분류 예측 태스크로 실험하였다. 결과적으로 해시태그 분류 모델이 유사도 테스트셋 기준으로 90%이상의 정확도를 보였고 기본 언어모델 대비 9% 이상 향상되었다. 해시태그 분류 학습을 통해 언어모델의 유사 콘텐츠 분류 능력이 향상됨을 알 수 있었고 콘텐츠 기반 필터링을 위한 언어모델의 활용 가치를 보여주었다.

합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구 (Anomaly Detections Model of Aviation System by CNN)

  • 임현재;김태림;송종규;김범수
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2023
  • 최근 미래의 운송시스템으로 도심교통항공(Urban Aircraft Mobility)이 주목받고 있으며 소형 드론도 다양한 산업에서 역할을 하고 있다. 다양한 종류의 항공 시스템 고장은 추락으로 막대한 재산 및 인명 피해로 이어질 수 있다. 항공 시스템이 많이 활용되는 무기체계에서도 고장은 임무 실패의 결과를 유발한다. 본 논문에서는 항공 시스템의 이상(Anomaly)을 탐지하여 개발 및 생산 간 시스템의 신뢰도를 높이고 운용 중 사고를 예방할 수 있도록 딥러닝 기술을 활용한 이상 탐지 모델을 연구했다. 모델 훈련 및 평가 데이터로 극저온 환경에서 시스템의 전류 데이터를 활용하였으며 이미지 인식에 많이 활용되는 딥러닝 기법 합성곱 신경망(CNN; Convolutional Neural Network)을 활용하여 딥러닝 네트워크를 구현했다. 시험 대상 시스템은 극저온 환경에서 다양한 형태의 고장이 유발되었고 전륫값의 특이점이 나타났다. 시스템 정상 및 고장 데이터를 활용하여 모델을 훈련 시키고 평가한 결과 98% 이상의 재현율(Recall)로 이상 탐지하는 것을 확인했다.

Plasma Sheath Monitoring Sensor 데이터를 활용한 질소이온 상태예측 모형의 기계학습 (Efficient Multicasting Mechanism for Mobile Computing Environment Machine learning Model to estimate Nitrogen Ion State using Traingng Data from Plasma Sheath Monitoring Sensor)

  • 정희진;유진승;정민중
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.27-30
    • /
    • 2022
  • 기존의 공정방식에 비해 효율성이나 환경적 면에서 많은 장점을 가진 플라즈마 공정은 반도체 제작에서 널리 사용되고 있다. Plasma Sheath란 플라즈마 bulk와 그 것을 둘러싸고 있는 챔버 벽면과 전극 사이에서 관찰되는 어두운 영역으로 양이온과 전자의 이동속도 차이로 인해 발생한다. Plasma Sheath Monitoring Sensor (PSMS)는 플라즈마와 전극 사이의 전압(Voltage) 차이와 전극에 걸리는 RF power 등을 실시간으로 측정하는 센서로서 플라즈마 챔버 내에서 플라즈마의 상태와 매우 상관도가 높을 것으로 기대된다. 본 연구에서는 PSMS 데이터를 활용하여 플라즈마 챔버 내의 질소이온의 상태를 예측하는 모형을 딥러닝 기계학습 기법을 이용하여 구축하였다. 연구에 사용된 데이터는 파워와 압력을 달리 셋팅한 실험에서 측정된 PSMS 데이터를 학습데이터로 활용하고 플라즈마 bulk와 Si substrate에서 측정된 질소 이온의 비율, 플럭스, 밀도를 레이블로 활용하였다. 본 연구의 결과는 향후 플라즈마 공정의 최적화 및 실시간 정밀제어를 위한 인공지능 기술의 기초가 될 것으로 기대된다.

  • PDF

작물의 병충해 분류를 위한 이미지 활용 방법 연구 (Study on Image Use for Plant Disease Classification)

  • 정성호;한정은;정성균;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.343-350
    • /
    • 2022
  • 서로 다른 특징을 가지는 이미지를 통합하여 작물의 병충해 분류를 위한 심층신경망을 훈련하는 것이 학습 결과에 어떤 영향을 미치는지 확인하고, 심층신경망의 학습 결과를 개선할 수 있는 이미지 통합방법에 대해 실험하였다. 실험을 위해 두 종류의 작물 이미지 공개 데이터가 사용되었다. 하나는 인도의 실제 농장 환경에서 촬영된 작물 이미지이고 다른 하나는 한국의 실험실 환경에서 촬영한 작물 이미지였다. 작물 잎 이미지는 정상인 경우와 4종류의 병충해를 포함하여 5개의 하위 범주로 구성되었다. 심층신경망은 전이학습을 통해 사전 훈련된 VGG16이 특징 추출부에 사용되었고 분류기에는 다층퍼셉트론 구조를 사용하였다. 두 공개 데이터는 세 가지 방법으로 통합되어 심층신경망의 지도학습에 사용되었다. 훈련된 심층신경망은 평가 데이터를 이용해 평가되었다. 실험 결과에 따르면 심층신경망을 실험실 환경에서 촬영한 작물 이미지로 학습한 이후에 실제 농장 환경에서 촬영한 작물 이미지로 재학습하는 경우에 가장 좋은 성능을 보였다. 서로 다른 배경의 두 공공데이터를 혼용하여 사용하면 심층신경망의 학습 결과가 좋지 않았다. 심층신경망의 학습 과정에서 여러 종류의 데이터를 사용하는 방법에 따라 심층신경망의 성능이 달라질 수 있음을 확인하였다.

준지도 학습과 전이 학습을 이용한 선로 체결 장치 결함 검출 (Detection Fastener Defect using Semi Supervised Learning and Transfer Learning)

  • 이상민;한석민
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.91-98
    • /
    • 2023
  • 오늘날 인공지능 산업이 발전함에 따라 여러 분야에 걸쳐 인공지능을 통한 자동화 및 최적화가 이루어지고 있다. 국내의 철도 분야 또한 지도 학습을 이용한 레일의 결함을 검출하는 연구들을 확인할 수 있다. 그러나 철도에는 레일만이 아닌 다른 구조물들이 존재하며 그중 선로 체결 장치는 레일을 다른 구조물에 결합시켜주는 역할을 하는 장치로 안전사고의 예방을 위해서 주기적인 점검이 필요하다. 본 논문에는 선로 체결 장치의 데이터를 이용하여 준지도 학습(semi-supervised learning)과 전이 학습(transfer learning)을 이용한 분류기를 학습시켜 선로 안전 점검에 사용되는 비용을 줄이는 방안을 제안한다. 사용된 네트워크는 Resnet50이며 imagenet으로 선행 학습된 모델이다. 레이블이 없는 데이터에서 무작위로 데이터를 선정 후 레이블을 부여한 뒤 이를 통해 모델을 학습한다. 학습된 모델의 이용하여 남은 데이터를 예측 후 예측한 데이터 중 클래스 별 확률이 가장 높은 데이터를 정해진 크기만큼 훈련용 데이터에 추가하는 방식을 채택하였다. 추가적으로 초기의 레이블된 데이터의 크기가 끼치는 영향력을 확인해보기 위한 실험을 진행하였다. 실험 결과 최대 92%의 정확도를 얻을 수 있었으며 이는 지도 학습 대비 5% 내외의 성능 차이를 가진다. 이는 제안한 방안을 통해 추가적인 레이블링 과정 없이 비교적 적은 레이블을 이용하여 분류기의 성능을 기존보다 향상시킬 수 있을 것으로 예상된다.

Deep Learning-Enabled Detection of Pneumoperitoneum in Supine and Erect Abdominal Radiography: Modeling Using Transfer Learning and Semi-Supervised Learning

  • Sangjoon Park;Jong Chul Ye;Eun Sun Lee;Gyeongme Cho;Jin Woo Yoon;Joo Hyeok Choi;Ijin Joo;Yoon Jin Lee
    • Korean Journal of Radiology
    • /
    • 제24권6호
    • /
    • pp.541-552
    • /
    • 2023
  • Objective: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using supine and erect abdominal radiography. Materials and Methods: A model that can utilize "pneumoperitoneum" and "non-pneumoperitoneum" classes was developed through knowledge distillation. To train the proposed model with limited training data and weak labels, it was trained using a recently proposed semi-supervised learning method called distillation for self-supervised and self-train learning (DISTL), which leverages the Vision Transformer. The proposed model was first pre-trained with chest radiographs to utilize common knowledge between modalities, fine-tuned, and self-trained on labeled and unlabeled abdominal radiographs. The proposed model was trained using data from supine and erect abdominal radiographs. In total, 191212 chest radiographs (CheXpert data) were used for pre-training, and 5518 labeled and 16671 unlabeled abdominal radiographs were used for fine-tuning and self-supervised learning, respectively. The proposed model was internally validated on 389 abdominal radiographs and externally validated on 475 and 798 abdominal radiographs from the two institutions. We evaluated the performance in diagnosing pneumoperitoneum using the area under the receiver operating characteristic curve (AUC) and compared it with that of radiologists. Results: In the internal validation, the proposed model had an AUC, sensitivity, and specificity of 0.881, 85.4%, and 73.3% and 0.968, 91.1, and 95.0 for supine and erect positions, respectively. In the external validation at the two institutions, the AUCs were 0.835 and 0.852 for the supine position and 0.909 and 0.944 for the erect position. In the reader study, the readers' performances improved with the assistance of the proposed model. Conclusion: The proposed model trained with the DISTL method can accurately detect pneumoperitoneum on abdominal radiography in both the supine and erect positions.

Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke

  • Yiran Zhou;Di Wu;Su Yan;Yan Xie;Shun Zhang;Wenzhi Lv;Yuanyuan Qin;Yufei Liu;Chengxia Liu;Jun Lu;Jia Li;Hongquan Zhu;Weiyin Vivian Liu;Huan Liu;Guiling Zhang;Wenzhen Zhu
    • Korean Journal of Radiology
    • /
    • 제23권8호
    • /
    • pp.811-820
    • /
    • 2022
  • Objective: To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods: Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results: Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825-0.910) in the training cohort and 0.890 (0.844-0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion: The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.

이라크전쟁의 군사적 교훈 (Lessons learned from Operation Iraqi Freedom(OIF) for ROK forces)

  • 문광건
    • 안보군사학연구
    • /
    • 통권1호
    • /
    • pp.71-111
    • /
    • 2003
  • The key lessons of the very complex modern war can be dangerously misleading to the outsiders. The efforts trying to draw lessons learned from the Iraq War (OIF : Operation Iraqi Freedom) may be biased by the view of point by Americans, because most of war episodes have been come from the Western media coverage. More serious bias can be committed thanks to the differences of warfighting doctrines and military technology between US forces and ROK forces. However, OIF-fought allied commanders and outside military experts said this campaign exemplified 21st-century warfare: swift, agile and decisive, employing overpowering technology to bring relentless violence to bear in many places at once. Even though the campaign evolved differently than anticipated, allied forces regrouped and regained the initiative remarkably quickly, thanks in large part to a new command flexibility, tied to new technology that made possible the more rapid sharing of data. These factors permitted "new air-land dynamic". The things that compel that are good sensors networked with good intelligence disseminated through a robust networking system, which then yields speed. Speed turns out to be a very important factor for conducting "Rapid Decisive Operations" relied on joint "Mass of Effects". ROK forces facing the heaviest ground threat in the world may learn more from Cold War era-typed US Army 3rd Infantry Division (3ID), which operating considerably beyond existing doctrine. 3ID flew its personnel into Kuwait to meet up with equipment already located in the region as pre-positioned stock. During OIF, the division conducted continuous offensive operations over 230km deep battlespace for 21 days. The lessons learned for ROK army to prepare tomorrow's war may be found from 3ID in its training, command and control, task organization, firepower and battlespace management, and logistics.

  • PDF