• Title/Summary/Keyword: Training fidelity

Search Result 60, Processing Time 0.028 seconds

Verification of the Effects of Student-led Simulation with Team and Problem-Based Learning Class Training during COVID-19 (COVID-19시기의 예비간호사 training을 위한 학생주도 팀기반 문제중심학습 시뮬레이션 수업 효과검증)

  • Hana Kim;Mi-Ock Shim;Jisan Lee
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • This study aimed to develop SSTPBL (Student-led Simulation with Team and Problem-Based Learning), whichcombines TBL and PBL with a student-led method to strengthen knowledge application, nursing diagnosis ability, and collaboration ability among the core competencies of nurses. Then, SSTPBL was applied to nursing students, and the results were assessed. The data was collected from September 15, 2022, to December 21, 2022, with structured questionnaires and focus group interviews with 51 fourth-year nursing students at a university in A City. The collected data were analyzed using SPSS version 25.0 and topic analysis. As a results, it was effective in simulation experience satisfaction(t = 3.51, p < .01), vSim experience satisfaction(t = 3.50, p < .01), preparation as a prospective nurse(t = 3.73, p < .01), learning self-efficacy(t = 3.87, p < .01), collaborative self-efficacy (t = 4.30, p < .01), problem-solving ability(t = 5.26, p < .01), educational satisfaction(t = 3.54, p < .01), digital health equity(t = 2.18, p < .05). Through the qualitative data's topic analysis, six main topics were derived. The main topics were 'similar to clinical practice', 'difficulty in immersion', 'learning through others', 'learning through self-reflection', 'improving confidence through new experiences' and 'new teaching methods'. Based on the results of this study, it is expected that SSTPBL can be used in various ways as a new training method for prospective nurses in the face of growing clinical practice restrictions after the pandemic.

Effect of Cook's Environmental Awareness and Eco-friendly Attitude on Food Safety Pursuit Behavior (조리사의 환경의식과 친환경태도가 식품안전추구행동에 미치는 영향)

  • Lee, Jong-Ho
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.60-70
    • /
    • 2018
  • Rapid economic growth brought material affluence and convenience, but it also has caused a negative issue, such as environmental damage. Therefore, this research holds the purpose of grasping structural influencing relationship of environmental awareness of cook, which is taking an important role in food safety among workers in hotel restaurants with eco-friendly attitude and food safety pursuit behavior. To achieve the purpose, collected materials were tested for the fidelity, organic causation and control effect, using Structural Equation Modeling for frequency analysis, confirmatory factor analysis, credibility analysis and hypothesis testing with SPSS (V23.0) and AMOS (V21.0) programs. Environmental awareness of hotel cook has causation with eco-friendly attitude, and the attitude has meaningful causation with food safety pursuit behavior. That is, it proved that cooks are taking care of their job carefully from the pre-cooking stage while most of people ignore the storing stage. The result shows not only hotel's own training session, cook's level of consciousness on the food safety and they are working with high sense of responsibility. The limitation of this research is that it only conducted with cooks of deluxe hotels in Busan, and it could not include various variables about environmental awareness. Therefore, it is expected that the lacking contents to be dealt by a follow-up study.

The Study on the Direction of Developing an Aerodrome Traffic Control Simulator for the Air Traffic Controller (항공교통관제사를 위한 국내 비행장 관제시뮬레이터 구현 방향의 연구)

  • Hong, Seung-Beom;Kim, DoHyun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.114-120
    • /
    • 2014
  • In this paper, we reviews the need and contents of aerodrome control simulator for air traffic controllers' training. In the view of managing the aviation safety, the departure and landing phases of aircraft are very important, because more than 60% of aircraft accidents and incidents have occurred in the take-off and landing phases. According to the benchmark each as practice type, simulation device and fidelity of reality of the air traffic control simulator, we have evaluated the implementation level of the domestic air traffic control simulator and checked up the current simulator's problems through the air traffic controllers' survey. Therefore, we suggest to the direction of developing a HI-FI simulator for aerodrome controllers.

Effect of Simulation-based Practice on Clinical Performance and Problem Solving Process for Nursing Students (시뮬레이션을 활용한 실습교육이 간호학생의 간호수행능력과 문제해결 과정에 미치는 효과)

  • Lee, Myeong-Sun;Hahn, Suk-Won
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.17 no.2
    • /
    • pp.226-234
    • /
    • 2011
  • Purpose: The purpose of this study was to identify the effect of a simulation-based practice on clinical performance and problem solving processes for nursing students. Method: The study used a one group pre-post test design. Students experienced a simulation-based practice that included team base learning, skill training, taking a high-fidelity simulation with SimMan 3G, and also being debriefed for 12 weeks (August 2010 to December 2010). The pre-test and post-test were conducted to compare the differences in knowledge, clinical nursing skills, and problem solving processes. Result: After students had received the simulation-based practice, they showed statistically significant higher knowledge (t=14.73, p<.001) and clinical nursing skills (t=15.47, p<.001) than before. However, there was no significant difference in the problem solving process score (t=1.53, p=.127). Conclusion: This study showed that knowledge and clinical nursing skills were significantly improved by the simulation-based practice. Further research would be required to identify how the problem solving process that uses simulation-based practice could be developed further.

The Effects of Mechanical Ventilation Simulation on the Clinical Judgment and Self-confidence of Nursing Students (중환자간호 기계환기 시뮬레이션교육이 간호학생의 임상판단력과 자신감에 미치는 영향)

  • Ha, Yi Kyung;Koh, Chin Kang
    • Perspectives in Nursing Science
    • /
    • v.9 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the effects of mechanical ventilation simulation on the clinical judgment and self-confidence of nursing students. Methods: This study was a quasi-experimental study. From one university, 118 undergraduate nursing students participated in this study. Sixty students were in the intervention group, and fifty-eight students were in the control group. A simulation scenario utilizing a high-fidelity human simulator focusing on nursing care for patients with a mechanical ventilator was developed for this study. Data were collected with a self-report survey method before the intervention, right after intervention, and two weeks later. Results: Students in the intervention group showed significantly higher increases in clinical judgment and self-confidence than those in the control group at the immediate posttest. Moreover, 2 weeks later, the increase in clinical judgment and self-confidence from the pretest among the intervention group was significantly larger than those in the control group. Conclusion: Utilizing simulation education focusing on patients with a mechanical ventilator may contribute to training more competent nurses in the area of critical care nursing. It may also serve to provide a better critical care environment for the safety and health of patients.

  • PDF

Effectiveness of the Infectious Disease (COVID-19) Simulation Module Program on Nursing Students: Disaster Nursing Scenarios

  • Hwang, Won Ju;Lee, Jungyeon
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.6
    • /
    • pp.648-660
    • /
    • 2021
  • Purpose: This study aimed to develop an emerging infectious disease (COVID-19) simulation module for nursing students and verify its effectiveness. Methods: A one-group pretest-posttest quasi-experimental study was conducted with 78 under-graduate nursing students. A simulation module was developed based on the Jeffries simulation model. It consisted of pre-simulation lectures on disaster nursing including infectious disease pandemics, practice, and debriefings with serial tests. The scenarios contained pre-hospital settings, home visits, arrival to the emergency department, and follow-up home visits for rehabilitation. Results: Disaster preparedness showed a statistically significant improvement, as did competencies in disaster nursing. Confidence in disaster nursing increased, as did willingness to participate in disaster response. However, critical thinking did not show significant differences between time points, and neither did triage scores. Conclusion: The developed simulation program targeting an infectious disease disaster positively impacts disaster preparedness, disaster nursing competency, and confidence in disaster nursing, among nursing students. Further studies are required to develop a high-fidelity module for nursing students and medical personnel. Based on the current pandemic, we suggest developing more scenarios with virtual reality simulations, as disaster simulation nursing education is required now more than ever.

A systematic review and meta-analysis of studies on extended reality-based pediatric nursing simulation program development

  • Kim, Eun Joo;Lim, Ji Young;Kim, Geun Myun
    • Child Health Nursing Research
    • /
    • v.29 no.1
    • /
    • pp.24-36
    • /
    • 2023
  • Purpose: This systematic literature review and meta-analysis explored extended reality (XR)-based pediatric nursing simulation programs and analyzed their effectiveness. Methods: A literature search was conducted between May 1 and 30, 2022 in the following electronic databases: MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and CINAHL. The search period was from 2000 to 2022. In total, 6,095 articles were reviewed according to the inclusion and exclusion criteria, and 14 articles were selected for the final content analysis and 10 for the meta-analysis. Data analysis was performed using descriptive statistics and the Comprehensive Meta-Analysis program. Results: XR-based pediatric nursing simulation programs have increased since 2019. Studies using virtual reality with manikins or high-fidelity simulators were the most common, with six studies. The total effect size was statistically significant at 0.84 (95% confidence interval=0.50-1.19, z=4.82, p<.001). Conclusion: Based on the findings, we suggest developing standardized guidelines for the operation of virtual pediatric nursing simulation education and practice. Simultaneously, the application of more sophisticated research designs for effect measurement and the combined applications of various virtual simulation methods are needed to validate the most effective simulation methodology.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

Development of C2 Virtual Linked Simulator For Engineering and Engagement Level Battle Experimentation (공학-교전급 전투실험을 위한 C2 가상모의 연동 시뮬레이터 개발)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan;Lee, Kyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • The Korean naval weapon systems, combat experiments establish the concept of Battle operations, and create the future of the new weapons system. Doctrine development and training as well as ranging from experiments for evaluate the performance of mission operations for combat experiments are used. The battle lab is effectively support tool for the Korean Naval battle experiments. The battle lab is through a dedicated testing facility and to build efficient and effective simulation-based acquisition supporting environment. In this paper, the ship / submarines C2 operations virtual simulator was developed to support the concept of Battle operations of naval combat experiments in training and tactical development. The ship C2 operations virtual simulator makes the anti-ship and anti-aircraft the engagement scenario for performed experiments using the SADM. The submarines C2 operations virtual simulator makes the anti-submarine engagement scenario for performed experiments using EAS. EAS System was created before reuse. EAS system by modifying the additional interfaces HLA-RTI has been reused. Reflected in the tactics and training after analysis of the results through the battle experiment. Also increase training fidelity through operator involvement. The anti-ship and anti-aircraft system architecture (SADM) and anti-submarine system architecture (EAS) requires unique design of system framework since two separate architectures should be integrated into a system. An C2 virtual linked architecture was used to integrate different system architecture. A C2 virtual linked software framework, designed that have integrated protocol for battle experimental linkage and battlefield visualization environment.

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF