We present a machine learning approach to estimating stellar atmospheric parameters, effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]) for stars observed during the course of the Sloan Digital Sky Survey (SDSS). For training a neural network, we randomly sampled the SDSS data with stellar parameters available from SEGUE Stellar Parameter Pipeline (SSPP) to cover the parameter space as wide as possible. We selected stars that are not included in the training sample as validation sample to determine the accuracy and precision of each parameter. We also divided the training and validation samples into four groups that cover signal-to-noise ratio (S/N) of 10-20, 20-30, 30-50, and over 50 to assess the effect of S/N on the parameter estimation. We find from the comparison of the network-driven parameters with the SSPP ones the range of the uncertainties of 73~123 K in Teff, 0.18~0.42 dex in log g, and 0.12~0.25 dex in [Fe/H], respectively, depending on the S/N range adopted. We conclude that these precisions are high enough to study the chemical and kinematic properties of the Galactic disk and halo stars, and we will attempt to apply this technique to Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which plans to obtain about 8 million stellar spectra, in order to estimate stellar parameters.
본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용하였다. 그리고 모형의 훈련과 검증을 위하여 이용된 자료는 풍수년, 평수년, 갈수년 풍수년+평수년, 풍수년+갈수년, 평수년+갈수년 및 풍수년+평수년+갈수년으로 구분하여 구성하였다. 모형의 훈련과정에서 각 자료를 이용하여 최적 연결강도와 편차가 결정되어 졌으며, 동시에 일유출량이 계산되어졌다. 예측오차의 통계분석을 통하여 풍수년+갈수년의 자료를 제외하고는 훈련결과가 양호한 것으로 나타났다. 모형의 검증에는 모형의 훈련을 통해 산정된 CASE 1 의 SCGBP 알고리즘의 연결강도와 편차를 이용하였으며, 검증의 결과는 훈련결과처럼 만족스러운 것으로 분석되었다. 또한 본 연구에서 선정한 신경망모형과 비교검토하기 위하여 다중회귀분석모형을 적용하여 일유출량을 예측하였으며, 그 결과 신경망모형이 다소 우수한 결과를 나타내는 것으로 분석되었다. 이와 같이 신경망모형은 조직적인 접근법, 매개변수의 감소 및 모델을 개발하는데 소모되는 시간을 줄일수 있는 장점이 있다.
In this study, a chest deflection is predicted by introducing a deep learning technique with the results of the frontal impact of the USNCAP conducted for 110 car models from MY2018 to MY2020. The 120 data are divided into training data and test data, and the training data is divided into training data and validation data to determine the hyperparameters. In this process, the deceleration data of each vehicle is averaged in units of 10 ms from crash pulses measured up to 100 ms. The performance of the deep learning model is measured by the indices of the mean squared error and the mean absolute error on the test data. A DNN (Deep Neural Network) model can give different predictions for the same hyperparameter values at every run. Considering this, the mean and standard deviation of the MSE (Mean Squared Error) and the MAE (Mean Absolute Error) are calculated. In addition, the deep learning model performance according to the inclusion of CVW (Curb Vehicle Weight) is also reviewed.
International Journal of Aerospace System Engineering
/
제5권1호
/
pp.9-18
/
2018
The longitudinal flight parameters of a light airplane are estimated from flight test data by use of the output error method. The reliability of the flight test measurement is examined in engineering judgment, scatter and Cramer-Rao bound, which turns out to be satisfactory with minor defects. Estimated parameter values are validated by comparing the simulated responses with the ones from actual flight tests. The FTD(Flight Training Device) of a light airplane turns out to satisfy the qualification of FAA Level 5 FTD in longitudinal motion. All the necessary practices for generation of high-fidelity data in longitudinal motion of a light aircraft are successfully performed in this study.
딥러닝 기법은 영상 처리 분야에서 높은 성능을 입증 받아 다양한 분야에서 적용되고 있다. 이러한 딥러닝 모델의 검증에 가장 널리 사용되는 방법으로는 홀드아웃 검증 방법, k-겹 교차 검증 방법, 부트스트랩 방법 등이 있다. 이러한 기존의 기법들은 데이터 셋을 분할하는 과정에서 클래스 간의 비율에 대한 균형을 고려하지만, 같은 클래스 내에서도 존재하는 다양한 특징들의 비율은 고려하지 않고 있다. 이러한 특징들을 고려하지 않을 경우, 일부 특징에 편향된 검증 결과를 얻게 될 수 있다. 따라서 본 논문에서는 기존 검증 방법들을 개선하여 영상 분류를 위한 데이터 특징 커버리지 기반의 딥러닝 모델 검증 기법을 제안한다. 제안하는 기법은 딥러닝 모델의 학습과 검증을 위한 훈련 데이터 셋과 평가 데이터 셋이 전체 데이터 셋의 특징을 얼마나 반영하고 있는지 수치로 측정할 수 있는 데이터 특징 커버리지를 제안한다. 이러한 방식은 전체 데이터 셋의 특징을 모두 포함하도록 커버리지를 보장하여 데이터 셋을 분할할 수 있고, 모델의 평가 결과를 생성한 특징 군집 단위로 분석할 수 있다. 검증결과, 훈련 데이터 셋의 데이터 특징 커버리지가 낮아질 경우, 모델이 특정 특징에 편향되게 학습하여 모델의 성능이 낮아지며, Fashion-MNIST의 경우 정확도가 8.9%까지 차이나는 것을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제18권3호
/
pp.735-744
/
2007
Support vector machine(SVM) is capable of providing a more complete description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse kernel regression(SKR) to overcome a weak point of SVM, which is, the steep growth of the number of support vectors with increasing the number of training data. The iterative reweighted least squares(IRWLS) procedure is used to solve the optimal problem of SKR with a Laplacian prior. Furthermore, the generalized cross validation(GCV) function is introduced to select the hyper-parameters which affect the performance of SKR. Experimental results are then presented which illustrate the performance of the proposed procedure.
Since satellite images generally include clouds in the atmosphere, it is essential to detect or mask clouds before satellite image processing. Clouds were detected using physical characteristics of clouds in previous research. Cloud detection methods using deep learning techniques such as CNN or the modified U-Net in image segmentation field have been studied recently. Since image segmentation is the process of assigning a label to every pixel in an image, precise pixel-based dataset is required for cloud detection. Obtaining accurate training datasets is more important than a network configuration in image segmentation for cloud detection. Existing deep learning techniques used different training datasets. And test datasets were extracted from intra-dataset which were acquired by same sensor and procedure as training dataset. Different datasets make it difficult to determine which network shows a better overall performance. To verify the effectiveness of the cloud detection network such as Cloud-Net, two types of networks were trained using the cloud dataset from KOMPSAT-3 images provided by the AIHUB site and the L8-Cloud dataset from Landsat8 images which was publicly opened by a Cloud-Net author. Test data from intra-dataset of KOMPSAT-3 cloud dataset were used for validating the network. The simulation results show that the network trained with KOMPSAT-3 cloud dataset shows good performance on the network trained with L8-Cloud dataset. Because Landsat8 and KOMPSAT-3 satellite images have different GSDs, making it difficult to achieve good results from cross-sensor validation. The network could be superior for intra-dataset, but it could be inferior for cross-sensor data. It is necessary to study techniques that show good results in cross-senor validation dataset in the future.
Mohasseb, M.;El-Rabbany, A.;El-Alim, O. Abd;Rashad, R.
한국항해항만학회:학술대회논문집
/
한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
/
pp.21-26
/
2006
This paper focuses on modeling and predicting differential GPS corrections transmitted by marine radio-beacon systems using artificial neural networks. Various neural network structures with various training algorithms were examined, including Linear, Radial Biases, and Feedforward. Matlab Neural Network toolbox is used for this purpose. Data sets used in building the model are the transmitted pseudorange corrections and broadcast navigation message. Model design is passed through several stages, namely data collection, preprocessing, model building, and finally model validation. It is found that feedforward neural network with automated regularization is the most suitable for our data. In training the neural network, different approaches are used to take advantage of the pseudorange corrections history while taking into account the required time for prediction and storage limitations. Three data structures are considered in training the neural network, namely all round, compound, and average. Of the various data structures examined, it is found that the average data structure is the most suitable. It is shown that the developed model is capable of predicting the differential correction with an accuracy level comparable to that of beacon-transmitted real-time DGPS correction.
Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
천문학회보
/
제44권2호
/
pp.78.1-78.1
/
2019
There are a huge number of faint objects that have not been observed due to the lack of large and deep surveys. In this study, we demonstrate that a deep learning approach can produce a better quality deep image from a single pass imaging so that could be an alternative of conventional image stacking technique or the expensive large and deep surveys. Using data from the Sloan Digital Sky Survey (SDSS) stripe 82 which provide repeatedly scanned imaging data, a training data set is constructed: g-, r-, and i-band images of single pass data as an input and r-band co-added image as a target. Out of 151 SDSS fields that have been repeatedly scanned 34 times, 120 fields were used for training and 31 fields for validation. The size of a frame selected for the training is 1k by 1k pixel scale. To avoid possible problems caused by the small number of training sets, frames are randomly selected within that field each iteration of training. Every 5000 iterations of training, the performance were evaluated with RMSE, peak signal-to-noise ratio which is given on logarithmic scale, structural symmetry index (SSIM) and difference in SSIM. We continued the training until a GAN model with the best performance is found. We apply the best GAN-model to NGC0941 located in SDSS stripe 82. By comparing the radial surface brightness and photometry error of images, we found the possibility that this technique could generate a deep image with statistics close to the stacked image from a single-pass image.
최근의 정보기술 개발은 온라인 훈련에 기여하였으며 이러닝 혹은 가상 교육 등과 같이 유사한 개념으로 사용되고 있는 기업에서의 온라인 교육은 피교육자에게 다양한 방법으로 교육 기회를 제공하고 있다. 또한 전자적인 측면에서 일괄 서비스 체계의 솔류션을 제공하는 혁신 서비스로서의 기능을 제공하고 있으며 온라인 교육 환경하에서는 교육자와 피교육자가 시간과 장소에 구애받지 않고 개인화된 교육 패키지를 공급할 수 있게 한다. 본 논문에서는 온라인 교육에 영향을 미치는 요인들을 독립 변수로 하고 교육 성과와 전달 성과의 두 가지 측면에서의 교육 효과성을 종속 변수로 하는 관계를 실증적으로 검증하였다. 기존의 연구 결과를 기반으로 8개의 가정을 설정하고 설문서를 작성하여 LISREL을 이용하여 분석 한 결과 피교육자에 기인된 개별적 변수와 조직 변수가 훈련 효과성과 유의성이 있는 것으로 나타났다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.