• 제목/요약/키워드: Training and Validation Data

검색결과 317건 처리시간 0.039초

Machine Learning Approach to Estimation of Stellar Atmospheric Parameters

  • Han, Jong Heon;Lee, Young Sun;Kim, Young kwang
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.54.2-54.2
    • /
    • 2016
  • We present a machine learning approach to estimating stellar atmospheric parameters, effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]) for stars observed during the course of the Sloan Digital Sky Survey (SDSS). For training a neural network, we randomly sampled the SDSS data with stellar parameters available from SEGUE Stellar Parameter Pipeline (SSPP) to cover the parameter space as wide as possible. We selected stars that are not included in the training sample as validation sample to determine the accuracy and precision of each parameter. We also divided the training and validation samples into four groups that cover signal-to-noise ratio (S/N) of 10-20, 20-30, 30-50, and over 50 to assess the effect of S/N on the parameter estimation. We find from the comparison of the network-driven parameters with the SSPP ones the range of the uncertainties of 73~123 K in Teff, 0.18~0.42 dex in log g, and 0.12~0.25 dex in [Fe/H], respectively, depending on the S/N range adopted. We conclude that these precisions are high enough to study the chemical and kinematic properties of the Galactic disk and halo stars, and we will attempt to apply this technique to Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which plans to obtain about 8 million stellar spectra, in order to estimate stellar parameters.

  • PDF

다층신경망모형에 의한 일 유출량의 예측에 관한 연구 (A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model)

  • 김성원
    • 한국수자원학회논문집
    • /
    • 제33권5호
    • /
    • pp.537-550
    • /
    • 2000
  • 본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용하였다. 그리고 모형의 훈련과 검증을 위하여 이용된 자료는 풍수년, 평수년, 갈수년 풍수년+평수년, 풍수년+갈수년, 평수년+갈수년 및 풍수년+평수년+갈수년으로 구분하여 구성하였다. 모형의 훈련과정에서 각 자료를 이용하여 최적 연결강도와 편차가 결정되어 졌으며, 동시에 일유출량이 계산되어졌다. 예측오차의 통계분석을 통하여 풍수년+갈수년의 자료를 제외하고는 훈련결과가 양호한 것으로 나타났다. 모형의 검증에는 모형의 훈련을 통해 산정된 CASE 1 의 SCGBP 알고리즘의 연결강도와 편차를 이용하였으며, 검증의 결과는 훈련결과처럼 만족스러운 것으로 분석되었다. 또한 본 연구에서 선정한 신경망모형과 비교검토하기 위하여 다중회귀분석모형을 적용하여 일유출량을 예측하였으며, 그 결과 신경망모형이 다소 우수한 결과를 나타내는 것으로 분석되었다. 이와 같이 신경망모형은 조직적인 접근법, 매개변수의 감소 및 모델을 개발하는데 소모되는 시간을 줄일수 있는 장점이 있다.

  • PDF

정면충돌 시험결과와 딥러닝 모델을 이용한 흉부변형량의 예측 (Prediction of Chest Deflection Using Frontal Impact Test Results and Deep Learning Model)

  • 이권희;임재문
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.55-62
    • /
    • 2023
  • In this study, a chest deflection is predicted by introducing a deep learning technique with the results of the frontal impact of the USNCAP conducted for 110 car models from MY2018 to MY2020. The 120 data are divided into training data and test data, and the training data is divided into training data and validation data to determine the hyperparameters. In this process, the deceleration data of each vehicle is averaged in units of 10 ms from crash pulses measured up to 100 ms. The performance of the deep learning model is measured by the indices of the mean squared error and the mean absolute error on the test data. A DNN (Deep Neural Network) model can give different predictions for the same hyperparameter values at every run. Considering this, the mean and standard deviation of the MSE (Mean Squared Error) and the MAE (Mean Absolute Error) are calculated. In addition, the deep learning model performance according to the inclusion of CVW (Curb Vehicle Weight) is also reviewed.

Estimation and Validation of Longitudinal Stability/Control Derivatives for the Flight Training Device of a Light Aircraft

  • Lee, Jung Hoon
    • International Journal of Aerospace System Engineering
    • /
    • 제5권1호
    • /
    • pp.9-18
    • /
    • 2018
  • The longitudinal flight parameters of a light airplane are estimated from flight test data by use of the output error method. The reliability of the flight test measurement is examined in engineering judgment, scatter and Cramer-Rao bound, which turns out to be satisfactory with minor defects. Estimated parameter values are validated by comparing the simulated responses with the ones from actual flight tests. The FTD(Flight Training Device) of a light airplane turns out to satisfy the qualification of FAA Level 5 FTD in longitudinal motion. All the necessary practices for generation of high-fidelity data in longitudinal motion of a light aircraft are successfully performed in this study.

영상 데이터 특징 커버리지 기반 딥러닝 모델 검증 기법 (Deep Learning Model Validation Method Based on Image Data Feature Coverage)

  • 임창남;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.375-384
    • /
    • 2021
  • 딥러닝 기법은 영상 처리 분야에서 높은 성능을 입증 받아 다양한 분야에서 적용되고 있다. 이러한 딥러닝 모델의 검증에 가장 널리 사용되는 방법으로는 홀드아웃 검증 방법, k-겹 교차 검증 방법, 부트스트랩 방법 등이 있다. 이러한 기존의 기법들은 데이터 셋을 분할하는 과정에서 클래스 간의 비율에 대한 균형을 고려하지만, 같은 클래스 내에서도 존재하는 다양한 특징들의 비율은 고려하지 않고 있다. 이러한 특징들을 고려하지 않을 경우, 일부 특징에 편향된 검증 결과를 얻게 될 수 있다. 따라서 본 논문에서는 기존 검증 방법들을 개선하여 영상 분류를 위한 데이터 특징 커버리지 기반의 딥러닝 모델 검증 기법을 제안한다. 제안하는 기법은 딥러닝 모델의 학습과 검증을 위한 훈련 데이터 셋과 평가 데이터 셋이 전체 데이터 셋의 특징을 얼마나 반영하고 있는지 수치로 측정할 수 있는 데이터 특징 커버리지를 제안한다. 이러한 방식은 전체 데이터 셋의 특징을 모두 포함하도록 커버리지를 보장하여 데이터 셋을 분할할 수 있고, 모델의 평가 결과를 생성한 특징 군집 단위로 분석할 수 있다. 검증결과, 훈련 데이터 셋의 데이터 특징 커버리지가 낮아질 경우, 모델이 특정 특징에 편향되게 학습하여 모델의 성능이 낮아지며, Fashion-MNIST의 경우 정확도가 8.9%까지 차이나는 것을 확인하였다.

Sparse Kernel Regression using IRWLS Procedure

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.735-744
    • /
    • 2007
  • Support vector machine(SVM) is capable of providing a more complete description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse kernel regression(SKR) to overcome a weak point of SVM, which is, the steep growth of the number of support vectors with increasing the number of training data. The iterative reweighted least squares(IRWLS) procedure is used to solve the optimal problem of SKR with a Laplacian prior. Furthermore, the generalized cross validation(GCV) function is introduced to select the hyper-parameters which affect the performance of SKR. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

Performance Analysis of Cloud-Net with Cross-sensor Training Dataset for Satellite Image-based Cloud Detection

  • Kim, Mi-Jeong;Ko, Yun-Ho
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.103-110
    • /
    • 2022
  • Since satellite images generally include clouds in the atmosphere, it is essential to detect or mask clouds before satellite image processing. Clouds were detected using physical characteristics of clouds in previous research. Cloud detection methods using deep learning techniques such as CNN or the modified U-Net in image segmentation field have been studied recently. Since image segmentation is the process of assigning a label to every pixel in an image, precise pixel-based dataset is required for cloud detection. Obtaining accurate training datasets is more important than a network configuration in image segmentation for cloud detection. Existing deep learning techniques used different training datasets. And test datasets were extracted from intra-dataset which were acquired by same sensor and procedure as training dataset. Different datasets make it difficult to determine which network shows a better overall performance. To verify the effectiveness of the cloud detection network such as Cloud-Net, two types of networks were trained using the cloud dataset from KOMPSAT-3 images provided by the AIHUB site and the L8-Cloud dataset from Landsat8 images which was publicly opened by a Cloud-Net author. Test data from intra-dataset of KOMPSAT-3 cloud dataset were used for validating the network. The simulation results show that the network trained with KOMPSAT-3 cloud dataset shows good performance on the network trained with L8-Cloud dataset. Because Landsat8 and KOMPSAT-3 satellite images have different GSDs, making it difficult to achieve good results from cross-sensor validation. The network could be superior for intra-dataset, but it could be inferior for cross-sensor data. It is necessary to study techniques that show good results in cross-senor validation dataset in the future.

Modeling Differential Global Positioning System Pseudorange Correction

  • Mohasseb, M.;El-Rabbany, A.;El-Alim, O. Abd;Rashad, R.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.21-26
    • /
    • 2006
  • This paper focuses on modeling and predicting differential GPS corrections transmitted by marine radio-beacon systems using artificial neural networks. Various neural network structures with various training algorithms were examined, including Linear, Radial Biases, and Feedforward. Matlab Neural Network toolbox is used for this purpose. Data sets used in building the model are the transmitted pseudorange corrections and broadcast navigation message. Model design is passed through several stages, namely data collection, preprocessing, model building, and finally model validation. It is found that feedforward neural network with automated regularization is the most suitable for our data. In training the neural network, different approaches are used to take advantage of the pseudorange corrections history while taking into account the required time for prediction and storage limitations. Three data structures are considered in training the neural network, namely all round, compound, and average. Of the various data structures examined, it is found that the average data structure is the most suitable. It is shown that the developed model is capable of predicting the differential correction with an accuracy level comparable to that of beacon-transmitted real-time DGPS correction.

  • PDF

Deep survey using deep learning: generative adversarial network

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • There are a huge number of faint objects that have not been observed due to the lack of large and deep surveys. In this study, we demonstrate that a deep learning approach can produce a better quality deep image from a single pass imaging so that could be an alternative of conventional image stacking technique or the expensive large and deep surveys. Using data from the Sloan Digital Sky Survey (SDSS) stripe 82 which provide repeatedly scanned imaging data, a training data set is constructed: g-, r-, and i-band images of single pass data as an input and r-band co-added image as a target. Out of 151 SDSS fields that have been repeatedly scanned 34 times, 120 fields were used for training and 31 fields for validation. The size of a frame selected for the training is 1k by 1k pixel scale. To avoid possible problems caused by the small number of training sets, frames are randomly selected within that field each iteration of training. Every 5000 iterations of training, the performance were evaluated with RMSE, peak signal-to-noise ratio which is given on logarithmic scale, structural symmetry index (SSIM) and difference in SSIM. We continued the training until a GAN model with the best performance is found. We apply the best GAN-model to NGC0941 located in SDSS stripe 82. By comparing the radial surface brightness and photometry error of images, we found the possibility that this technique could generate a deep image with statistics close to the stacked image from a single-pass image.

  • PDF

온라인 교육이 훈련교과성에 미치는 영향에 관한 실증적 연구 (Effect of Online Education on Training Effectiveness: Conceptual Framework and Empirical Validation)

  • 김정욱;남기찬
    • 한국전자거래학회지
    • /
    • 제12권4호
    • /
    • pp.185-209
    • /
    • 2007
  • 최근의 정보기술 개발은 온라인 훈련에 기여하였으며 이러닝 혹은 가상 교육 등과 같이 유사한 개념으로 사용되고 있는 기업에서의 온라인 교육은 피교육자에게 다양한 방법으로 교육 기회를 제공하고 있다. 또한 전자적인 측면에서 일괄 서비스 체계의 솔류션을 제공하는 혁신 서비스로서의 기능을 제공하고 있으며 온라인 교육 환경하에서는 교육자와 피교육자가 시간과 장소에 구애받지 않고 개인화된 교육 패키지를 공급할 수 있게 한다. 본 논문에서는 온라인 교육에 영향을 미치는 요인들을 독립 변수로 하고 교육 성과와 전달 성과의 두 가지 측면에서의 교육 효과성을 종속 변수로 하는 관계를 실증적으로 검증하였다. 기존의 연구 결과를 기반으로 8개의 가정을 설정하고 설문서를 작성하여 LISREL을 이용하여 분석 한 결과 피교육자에 기인된 개별적 변수와 조직 변수가 훈련 효과성과 유의성이 있는 것으로 나타났다

  • PDF