• Title/Summary/Keyword: Training Samples

Search Result 570, Processing Time 0.025 seconds

Empirical Analysis of a Fine-Tuned Deep Convolutional Model in Classifying and Detecting Malaria Parasites from Blood Smears

  • Montalbo, Francis Jesmar P.;Alon, Alvin S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.147-165
    • /
    • 2021
  • In this work, we empirically evaluated the efficiency of the recent EfficientNetB0 model to identify and diagnose malaria parasite infections in blood smears. The dataset used was collected and classified by relevant experts from the Lister Hill National Centre for Biomedical Communications (LHNCBC). We prepared our samples with minimal image transformations as opposed to others, as we focused more on the feature extraction capability of the EfficientNetB0 baseline model. We applied transfer learning to increase the initial feature sets and reduced the training time to train our model. We then fine-tuned it to work with our proposed layers and re-trained the entire model to learn from our prepared dataset. The highest overall accuracy attained from our evaluated results was 94.70% from fifty epochs and followed by 94.68% within just ten. Additional visualization and analysis using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm visualized how effectively our fine-tuned EfficientNetB0 detected infections better than other recent state-of-the-art DCNN models. This study, therefore, concludes that when fine-tuned, the recent EfficientNetB0 will generate highly accurate deep learning solutions for the identification of malaria parasites in blood smears without the need for stringent pre-processing, optimization, or data augmentation of images.

The Effect of Individual Factors on Safety Behavior of Aircraft Maintenance Technician (개인적인 요인이 항공정비사의 안전행동에 미치는 영향)

  • Yoon, Hee-Seok;Park, Jin-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.134-141
    • /
    • 2021
  • As the domestic aviation industry grows, the aviation maintenance field is also growing rapidly. This change calls for more aircraft maintenance technicians, and interest in safety accidents is also increasing. Individual safety climate indicates the importance of safety in the organization. We expect that three individual factors (training effectiveness, procedure effectiveness, and work pressure) relate to safety behavior in the workplace via individual safety climate. The purpose of this research is investigating the relationship between individual factors and aircraft maintenance technician's safety behavior. Previous studies related to individual factors were examined for literature review. Based on the previous studies, research model was constructed. Hypothesis was verified by effected data from 305 samples were employed for final survey. The results show that individual factors were meaningful factors to effect perceived safety behavior, and safety knowledge & safety motivation were related to safety compliance & safety participation.

Adversarial Machine Learning: A Survey on the Influence Axis

  • Alzahrani, Shahad;Almalki, Taghreed;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.193-203
    • /
    • 2022
  • After the everyday use of systems and applications of artificial intelligence in our world. Consequently, machine learning technologies have become characterized by exceptional capabilities and unique and distinguished performance in many areas. However, these applications and systems are vulnerable to adversaries who can be a reason to confer the wrong classification by introducing distorted samples. Precisely, it has been perceived that adversarial examples designed throughout the training and test phases can include industrious Ruin the performance of the machine learning. This paper provides a comprehensive review of the recent research on adversarial machine learning. It's also worth noting that the paper only examines recent techniques that were released between 2018 and 2021. The diverse systems models have been investigated and discussed regarding the type of attacks, and some possible security suggestions for these attacks to highlight the risks of adversarial machine learning.

Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms

  • Zhu, Yirong;Huang, Lihua;Zhang, Zhijun;Bayrami, Behzad
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.389-406
    • /
    • 2022
  • Recycling concrete construction waste is an encouraging step toward green and sustainable building. A lot of research has been done on recycled aggregate concretes (RACs), but not nearly as much has been done on concrete made with recycled aggregate. Recycled aggregate concrete, on the other hand, has been found to have a lower mechanical productivity compared to conventional one. Accurately estimating the mechanical behavior of the concrete samples is a most important scientific topic in civil, structural, and construction engineering. This may prevent the need for excess time and effort and lead to economic considerations because experimental studies are often time-consuming, costly, and troublous. This study presents a comprehensive data-mining-based model for predicting the splitting tensile strength of recycled aggregate concrete modified with glass fiber and silica fume. For this purpose, first, 168 splitting tensile strength tests under different conditions have been performed in the laboratory, then based on the different conditions of each experiment, some variables are considered as input parameters to predict the splitting tensile strength. Then, three hybrid models as GWO-RF, GWO-MLP, and GWO-SVR, were utilized for this purpose. The results showed that all developed GWO-based hybrid predicting models have good agreement with measured experimental results. Significantly, the GWO-RF model has the best accuracy based on the model performance assessment criteria for training and testing data.

Predicting the spray uniformity of pest control drone using multi-layer perceptron (다층신경망을 이용한 드론 방제의 살포 균일도 예측)

  • Baek-gyeom Seong;Seung-woo Kang;Soo-hyun Cho;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Dae-hyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.25-34
    • /
    • 2023
  • In this study, we conducted a research on optimizing the spraying performance of agricultural drones and predicted the spraying performance in various flight conditions using the multi-layer perceptron (MLP). Data was collected using a test device for pesticide spraying performance according to the water sensitive paper (WSP) evaluation. MLP training involved supervised learning to achieve a coefficient of variation (CV), which indicates the degree of uniform spraying. The performance evaluation was conducted using R-squared (R2), the test samples showed an R2 of 0.80. The results of this study showed that drone spraying performance can be predicted under various flight environments. In addition, the correlation analysis between flight conditions and predicted spraying performance will be useful for further research on optimizing the spraying performance of agricultural drones.

Real-time Ball Detection and Tracking with P-N Learning in Soccer Game (P-N 러닝을 이용한 실시간 축구공 검출 및 추적)

  • Huang, Shuai-Jie;Li, Gen;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.447-450
    • /
    • 2011
  • This paper shows the application of P-N Learning [4] method in the soccer ball detection and improvement for increasing the speed of processing. In the P-N learning, the learning process is guided by positive (P) and negative (N) constraints which restrict the labeling of the unlabeled data, identify examples that have been classified in contradiction with structural constraints and augment the training set with the corrected samples in an iterative process. But for the long-view in the soccer game, P-N learning will produce so many ferns that more time is spent than other methods. We propose that color histogram of each frame is constructed to delete the unnecessary details in order to decreasing the number of feature points. We use the mask to eliminate the gallery region and Line Hough Transform to remove the line and adjust the P-N learning's parameters to optimize accurate and speed.

Characterization of neutron spectra for NAA irradiation holes in H-LPRR through Monte Carlo simulation

  • Kyung-O Kim;Gyuhong Roh;Byungchul Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4226-4230
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) has designed a Hybrid-Low Power Research Reactor (H-LPRR) which can be used for critical assembly and conventional research reactor as well. It is an open tank-in-pool type research reactor (Thermal Power: 50 kWth) of which the most important applications are Neutron Activation Analysis (NAA), Radioisotope (RI) production, education and training. There are eight irradiation holes on the edge of the reactor core: IR (6 holes for RI production) and NA (2 holes for NAA) holes. In order to quantify the elemental concentration in target samples through the Instrumental Neutron Activation Analysis (INAA), it is necessary to measure neutron spectrum parameters such as thermal neutron flux, the deviation from the ideal 1/E epithermal neutron flux distribution (α), and the thermal-to-epithermal neutron flux ratio (f) for the irradiation holes. In this study, the MCNP6.1 code and FORTRAN 90 language are applied to determine the parameters for the two irradiation holes (NA-SW and NA-NW) in H-LPRR, and in particular its α and f parameters are compared to values of other research reactors. The results confirmed that the neutron irradiation holes in H-LPRR are designed to be sufficiently applied to neutron activation analysis, and its performance is comparable to that of foreign research reactors including the TRIGA MARK II.

An Improved LBP-based Facial Expression Recognition through Optimization of Block Weights (블록가중치의 최적화를 통해 개선된 LBP기반의 표정인식)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.73-79
    • /
    • 2009
  • In this paper, a method is proposed that enhances the performance of the facial expression recognition using template matching of Local Binary Pattern(LBP) histogram. In this method, the face image is segmented into blocks, and the LBP histogram is constructed to be used as the feature of the block. Block dissimilarity is calculated between a block of input image and the corresponding block of the model image. Image dissimilarity is defined as the weighted sum of the block dissimilarities. In conventional methods, the block weights are assigned by intuition. In this paper a new method is proposed that optimizes the weights from training samples. An experiment shows the recognition rate is enhanced by the proposed method.

Estimation of tomato maturity as a continuous index using deep neural networks

  • Taehyeong Kim;Dae-Hyun Lee;Seung-Woo Kang;Soo-Hyun Cho;Kyoung-Chul Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.837-845
    • /
    • 2022
  • In this study, tomato maturity was estimated based on deep learning for a harvesting robot. Tomato images were obtained using a RGB camera installed on a monitoring robot, which was developed previously, and the samples were cropped to 128 × 128 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the mean-variance loss was used to learn implicitly the distribution of the data features by class. In the test stage, the tomato maturity was estimated as a continuous index, which has a range of 0 to 1, by calculating the expected class value. The results show that the F1-score of the classification was approximately 0.94, and the performance was similar to that of a deep learning-based classification task in the agriculture field. In addition, it was possible to estimate the distribution in each maturity stage. From the results, it was found that our approach can not only classify the discrete maturation stages of the tomatoes but also can estimate the continuous maturity.

On Optimizing Dissimilarity-Based Classifications Using a DTW and Fusion Strategies (DTW와 퓨전기법을 이용한 비유사도 기반 분류법의 최적화)

  • Kim, Sang-Woon;Kim, Seung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • This paper reports an experimental result on optimizing dissimilarity-based classification(DBC) by simultaneously using a dynamic time warping(DTW) and a multiple fusion strategy(MFS). DBC is a way of defining classifiers among classes; they are not based on the feature measurements of individual samples, but rather on a suitable dissimilarity measure among the samples. In DTW, the dissimilarity is measured in two steps: first, we adjust the object samples by finding the best warping path with a correlation coefficient-based DTW technique. We then compute the dissimilarity distance between the adjusted objects with conventional measures. In MFS, fusion strategies are repeatedly used in generating dissimilarity matrices as well as in designing classifiers: we first combine the dissimilarity matrices obtained with the DTW technique to a new matrix. After training some base classifiers in the new matrix, we again combine the results of the base classifiers. Our experimental results for well-known benchmark databases demonstrate that the proposed mechanism achieves further improved results in terms of classification accuracy compared with the previous approaches. From this consideration, the method could also be applied to other high-dimensional tasks, such as multimedia information retrieval.