• 제목/요약/키워드: Training Datasets

검색결과 330건 처리시간 0.039초

데이터 증강을 이용한 혀 영역 분할 성능 개선 (Enhancement of Tongue Segmentation by Using Data Augmentation)

  • 진홍;정성태
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.313-322
    • /
    • 2020
  • 많은 양의 데이터는 딥 러닝 모델의 견고성을 향상시키고 과적합 문제를 방지할 수 있게 해준다. 자동 혀 분할에서, 혀 영상 데이터 세트를 실제로 수집하고 라벨링하는 데에는 많은 어려움이 수반되므로 많은 양의 혀 영상 데이터를 사용하기 쉽지 않다. 데이터 증강은 새로운 데이터를 수집하지 않고 레이블 보존 변환을 사용하여 학습 데이터 세트를 확장하고 학습 데이터의 다양성을 증가시킬 수 있다. 이 논문에서는 이미지 자르기, 회전, 뒤집기, 색상 변환과 같은 7 가지 데이터 증강 방법을 사용하여 확장된 혀 영상 학습 데이터 세트를 생성하였다. 데이터 증강 방법의 성능을 확인하기 위하여 InceptionV3, EfficientNet, ResNet, DenseNet 등과 같은 전이 학습 모델을 사용하였다. 실험 결과 데이터 증강 방법을 적용함으로써 혀 분할의 정확도를 5~20% 향상시켰으며 기하학적 변환이 색상 변환보다 더 많은 성능 향상을 가져올 수 있음을 보여주었다. 또한 기하학적 변환 및 색상 변환을 임의로 선형 조합한 방법이 다른 데이터 증강 방법보다 우수한 분할 성능을 제공하여 InveptionV3 모델을 사용한 경우에 94.98 %의 정확도를 보였다.

Force-deformation relationship prediction of bridge piers through stacked LSTM network using fast and slow cyclic tests

  • Omid Yazdanpanah;Minwoo Chang;Minseok Park;Yunbyeong Chae
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.469-484
    • /
    • 2023
  • A deep recursive bidirectional Cuda Deep Neural Network Long Short Term Memory (Bi-CuDNNLSTM) layer is recruited in this paper to predict the entire force time histories, and the corresponding hysteresis and backbone curves of reinforced concrete (RC) bridge piers using experimental fast and slow cyclic tests. The proposed stacked Bi-CuDNNLSTM layers involve multiple uncertain input variables, including horizontal actuator displacements, vertical actuators axial loads, the effective height of the bridge pier, the moment of inertia, and mass. The functional application programming interface in the Keras Python library is utilized to develop a deep learning model considering all the above various input attributes. To have a robust and reliable prediction, the dataset for both the fast and slow cyclic tests is split into three mutually exclusive subsets of training, validation, and testing (unseen). The whole datasets include 17 RC bridge piers tested experimentally ten for fast and seven for slow cyclic tests. The results bring to light that the mean absolute error, as a loss function, is monotonically decreased to zero for both the training and validation datasets after 5000 epochs, and a high level of correlation is observed between the predicted and the experimentally measured values of the force time histories for all the datasets, more than 90%. It can be concluded that the maximum mean of the normalized error, obtained through Box-Whisker plot and Gaussian distribution of normalized error, associated with unseen data is about 10% and 3% for the fast and slow cyclic tests, respectively. In recapitulation, it brings to an end that the stacked Bi-CuDNNLSTM layer implemented in this study has a myriad of benefits in reducing the time and experimental costs for conducting new fast and slow cyclic tests in the future and results in a fast and accurate insight into hysteretic behavior of bridge piers.

Document Image Binarization by GAN with Unpaired Data Training

  • Dang, Quang-Vinh;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제16권2호
    • /
    • pp.8-18
    • /
    • 2020
  • Data is critical in deep learning but the scarcity of data often occurs in research, especially in the preparation of the paired training data. In this paper, document image binarization with unpaired data is studied by introducing adversarial learning, excluding the need for supervised or labeled datasets. However, the simple extension of the previous unpaired training to binarization inevitably leads to poor performance compared to paired data training. Thus, a new deep learning approach is proposed by introducing a multi-diversity of higher quality generated images. In this paper, a two-stage model is proposed that comprises the generative adversarial network (GAN) followed by the U-net network. In the first stage, the GAN uses the unpaired image data to create paired image data. With the second stage, the generated paired image data are passed through the U-net network for binarization. Thus, the trained U-net becomes the binarization model during the testing. The proposed model has been evaluated over the publicly available DIBCO dataset and it outperforms other techniques on unpaired training data. The paper shows the potential of using unpaired data for binarization, for the first time in the literature, which can be further improved to replace paired data training for binarization in the future.

중소기업 재직자들의 교육훈련에 대한 인지된 유용성이 교육 훈련 만족도에 미치는 영향: 인사부서 활동의 조절효과 (The Perceived Utility of Education and Training in SMEs on Employee Satisfaction: The Moderating Role of HRM Department Activities)

  • 박지성;채희선
    • 아태비즈니스연구
    • /
    • 제12권4호
    • /
    • pp.241-251
    • /
    • 2021
  • Purpose - Drawing on the content-process approach, this study examines the effect of employees' perceived utility of education and training in small and medium enterprises (SMEs) on their satisfaction. In addition, this study investigates how the human resource management department' activities moderate the relationship between employees' perceived utility of education and training and satisfaction. Design/methodology/approach - This study predicts the positive relationship between employees' perceived utility of education and training and satisfaction, and HR activities strengthens this positive relationship. To test these hypotheses, this study utilized Human Capital Corporate Panel (HCCP) datasets, especially 2017 data at the individual level. The number of the final sample is 425 for the test. Moreover, this study used the hierarchical regression model with SPSS. Finding - As predicted, the analytical results with the hierarchical regression model showed that employees' percieved utility of education and training and satisfaction were positively related. In addition, HR activities strengthened this relationship between employees' percieved utility of education and training and satisfaction. Research implications or Originality - This study will provide academic and practical implications for future research on human resource development, especially SMEs by deepening an understanding of the important factors in order to increase employees' satisfaction of education and training. the number of viewers is found in most American films released in Korea.

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.29-42
    • /
    • 2023
  • 본 논문은 서울, 부산, 인천과 같은 대한민국의 주요 도시들을 대상으로 일사량 예측 정확도를 향상하기 위한 방법론을 제안한다. 제안한 방법론은 먼저 GAN, CTGAN, Copula GAN, WGANGP, TVAE 등 다섯 가지 생성 모델을 이용하여 기존 학습 데이터와 유사한 독립 변수들을 생성한다. 다음으로 모델 학습에서의 데이터 편향성을 개선하고자, 생성한 독립 변수들에서 각각 랜덤 포레스트와 심층 신경망을 통해 종속 변숫값을 도출하여 학습 데이터 셋을 구축하고, 이를 기존 학습데이터 셋과 결합하여 예측 모델을 구성한다. 실험 결과, 증강된 데이터 셋으로 학습한 모델들은 기존 데이터 셋으로 학습한 모델들보다 향상된 성능을 나타내었다. 특히 CTGAN은 복잡한 다변량 데이터 관계를 효과적으로 다루는 메커니즘으로 인해 우수한 결과를 도출하였으며, 생성된 데이터는 일사량의 다양한 변화와 실제 변동성과 효과적으로 반영하였다. 제안한 방법론은 고품질의 생성 데이터로 학습 데이터를 증강함으로써, 데이터 부족 현상 문제를 다룰 수 있을 뿐만 아니라 지속 가능한 발전을 위한 태양광 발전 시스템 운영에도 이바지할 수 있을 것으로 기대한다.

Plurality Rule-based Density and Correlation Coefficient-based Clustering for K-NN

  • Aung, Swe Swe;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.183-192
    • /
    • 2017
  • k-nearest neighbor (K-NN) is a well-known classification algorithm, being feature space-based on nearest-neighbor training examples in machine learning. However, K-NN, as we know, is a lazy learning method. Therefore, if a K-NN-based system very much depends on a huge amount of history data to achieve an accurate prediction result for a particular task, it gradually faces a processing-time performance-degradation problem. We have noticed that many researchers usually contemplate only classification accuracy. But estimation speed also plays an essential role in real-time prediction systems. To compensate for this weakness, this paper proposes correlation coefficient-based clustering (CCC) aimed at upgrading the performance of K-NN by leveraging processing-time speed and plurality rule-based density (PRD) to improve estimation accuracy. For experiments, we used real datasets (on breast cancer, breast tissue, heart, and the iris) from the University of California, Irvine (UCI) machine learning repository. Moreover, real traffic data collected from Ojana Junction, Route 58, Okinawa, Japan, was also utilized to lay bare the efficiency of this method. By using these datasets, we proved better processing-time performance with the new approach by comparing it with classical K-NN. Besides, via experiments on real-world datasets, we compared the prediction accuracy of our approach with density peaks clustering based on K-NN and principal component analysis (DPC-KNN-PCA).

HiGANCNN: A Hybrid Generative Adversarial Network and Convolutional Neural Network for Glaucoma Detection

  • Alsulami, Fairouz;Alseleahbi, Hind;Alsaedi, Rawan;Almaghdawi, Rasha;Alafif, Tarik;Ikram, Mohammad;Zong, Weiwei;Alzahrani, Yahya;Bawazeer, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.23-30
    • /
    • 2022
  • Glaucoma is a chronic neuropathy that affects the optic nerve which can lead to blindness. The detection and prediction of glaucoma become possible using deep neural networks. However, the detection performance relies on the availability of a large number of data. Therefore, we propose different frameworks, including a hybrid of a generative adversarial network and a convolutional neural network to automate and increase the performance of glaucoma detection. The proposed frameworks are evaluated using five public glaucoma datasets. The framework which uses a Deconvolutional Generative Adversarial Network (DCGAN) and a DenseNet pre-trained model achieves 99.6%, 99.08%, 99.4%, 98.69%, and 92.95% of classification accuracy on RIMONE, Drishti-GS, ACRIMA, ORIGA-light, and HRF datasets respectively. Based on the experimental results and evaluation, the proposed framework closely competes with the state-of-the-art methods using the five public glaucoma datasets without requiring any manually preprocessing step.

인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가 (Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses)

  • 남충희
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

이미지 캡셔닝 기반의 새로운 위험도 측정 모델 (A Novel Image Captioning based Risk Assessment Model)

  • 전민성;고재필;최경주
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권4호
    • /
    • pp.119-136
    • /
    • 2023
  • Purpose We introduce a groundbreaking surveillance system explicitly designed to overcome the limitations typically associated with conventional surveillance systems, which often focus primarily on object-centric behavior analysis. Design/methodology/approach The study introduces an innovative approach to risk assessment in surveillance, employing image captioning to generate descriptive captions that effectively encapsulate the interactions among objects, actions, and spatial elements within observed scenes. To support our methodology, we developed a distinctive dataset comprising pairs of [image-caption-danger score] for training purposes. We fine-tuned the BLIP-2 model using this dataset and utilized BERT to decipher the semantic content of the generated captions for assessing risk levels. Findings In a series of experiments conducted with our self-constructed datasets, we illustrate that these datasets offer a wealth of information for risk assessment and display outstanding performance in this area. In comparison to models pre-trained on established datasets, our generated captions thoroughly encompass the necessary object attributes, behaviors, and spatial context crucial for the surveillance system. Additionally, they showcase adaptability to novel sentence structures, ensuring their versatility across a range of contexts.

Training-Free Hardware-Aware Neural Architecture Search with Reinforcement Learning

  • Tran, Linh Tam;Bae, Sung-Ho
    • 방송공학회논문지
    • /
    • 제26권7호
    • /
    • pp.855-861
    • /
    • 2021
  • Neural Architecture Search (NAS) is cutting-edge technology in the machine learning community. NAS Without Training (NASWOT) recently has been proposed to tackle the high demand of computational resources in NAS by leveraging some indicators to predict the performance of architectures before training. The advantage of these indicators is that they do not require any training. Thus, NASWOT reduces the searching time and computational cost significantly. However, NASWOT only considers high-performing networks which does not guarantee a fast inference speed on hardware devices. In this paper, we propose a multi objectives reward function, which considers the network's latency and the predicted performance, and incorporate it into the Reinforcement Learning approach to search for the best networks with low latency. Unlike other methods, which use FLOPs to measure the latency that does not reflect the actual latency, we obtain the network's latency from the hardware NAS bench. We conduct extensive experiments on NAS-Bench-201 using CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets, and show that the proposed method is capable of generating the best network under latency constrained without training subnetworks.