• Title/Summary/Keyword: Training 심볼 길이

Search Result 11, Processing Time 0.024 seconds

A Study on the Method to Treat Carrier Frequency Offset for VDES Receiver (VDES 수신기를 위한 주파수 옵셋 처리 방안 연구)

  • Ryu, Hyeong-Jik;Kim, Hye-Jin;Kim, Won-Yong;Park, Gae-Myeong;Kim, Jun-Tae;Yoo, Jin-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.310-312
    • /
    • 2018
  • In this paper, We stduy addtional consideration and method to treat carrier frquency offset on defined system parameter & requirements in IALA G1139, previous studied consecutively. We studied the method to treat carrier frequency offset by extending length of training symbol and by differential modulation. This study will publish and argue in IALA ENAV22. We will decide a method to treat carrier frequency offset from result of IALA ENAV22.

  • PDF

An Efficient symbol Synchronization Scheme with an Interpolator for Receiving in OFDM (OFDM 방식의 수신기를 위한 보간기의 효율적인 심볼 동기방법의 성능분석)

  • 김동옥;윤종호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.574-577
    • /
    • 2002
  • In this paper, we propose a new symbol time synchronization scheme suitable for the OFDM system with an interpolator. The proposed performs the following three steps. In the first step, the coarse symbol time synchronization is achieved by continuously measuring the average power of the received envelope signal. Based on this average power, the detection possibility for the symbol time synchronization is determined. If the signal is sufficient for synchronization, we next perform a relatively accurate symbol time synchronization by measuring the correlation a short training signal and the received envelope signal. Finally, an additional frequency synchronization is performed with a long training signal to correct symbol synchronization errors caused by the phase rotation. From the simulation results, one can see that the proposed synchronization scheme provides a good synchronization performance over frequency selective channels.

  • PDF

Design of LMS based adaptive equalizer using Discrete Multi-Wavelet Transform (Discrete Multi-Wavelet 변환을 이용한 LMS기반 적응 등화기 설계)

  • Choi, Yun-Seok;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.600-607
    • /
    • 2007
  • In the next generation mobile multimedia communications, the broad band shot-burst transmissions are used to reduce end-to-end transmission delay, and to limit the time variation of wireless channels over a burst. However, training overhead is very significant for such short burst formats. So, the availability of the short training sequence and the fast converging adaptive algorithm is essential in the system adopting the symbol-by-symbol adaptive equalizer. In this paper, we propose an adaptive equalizer using the DWMT (discrete multi-wavelet transform) and LMS (least mean square) adaptation. The proposed equalizer has a faster convergence rate than that of the existing transform-domain equalizers, while the increase of computational complexity is very small.

Synchronization Algorithm for Wireless LAM Using OFDM Transmission Technique (OFDM 전송기술을 이용하는 무선 LAN용 동기 알고리즘)

  • 김장욱;유기희;오창헌;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.157-165
    • /
    • 2004
  • The synchronization algorithm of IEEE 802.11a WLAN(Wireless Local Area Network) has three consecutive processes, which use a short code training symbol, a long code training symbol and a pilot symbol respectively. But in using this synchronization processes, the actual embodiment has two problems. First, the synchronization process has the complex structure using a long code training symbol and a pilot symbol. Second, since the long training symbol is only compensated with the offset correction coefficient, it can not be trusted perfectly. If the equalizer coefficient is obtained in this unstable period, the system performance is degraded. In particular, the system performance becomes worst in case of the 54 Mbps transmission system using the maximum length of data. In this paper, the new algorithm is proposed which can resolve the embodiment complexity of synchronization processes and structural defect, and also it is confirmed by simulation.

An Improved Symbol Offset Estimation Technique in OFDM-based Wireless LANs (OFDM 기반 무선 LAN에서의 개선된 심볼옵셋 추정기법)

  • Jeon, Won-Gi;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.66-78
    • /
    • 2002
  • In this paper, we propose a new symbol offset estimation technique for an orthogonal frequency-division multiplexing (OFDM)-based wireless LAN. When both inter-symbol interference (ISI) and inter-channel interference (ICI) do not exist in an OFDM symbol, symbol offsets cause circular shifts in the estimated channel impulse response (CIR) by the amount of symbol offset. Also, the power delay profile of a typical multipath wireless channel can be modeled by exponentially decaying function, and most energy of multipath channel is concentrated at the beginning part of the CIR. Based on these properties, the proposed symbol offset estimation technique estimates the CIR, which is circularly shifted by the amount of symbol offset, and then calculates the partial mean power from the estimated impulse response by using a moving window with a finite length. And, symbol offset can be estimated from the index of a moving window having the maximal partial mean power. The proposed technique can reduce noise effect in the process of the CIR estimation, and remove ISI and ICI using repetitive training symbol structure in time-domain for minimum training overhead. The performances of the proposed symbol offset estimation technique in typical indoor channels are demonstrated by computer simulation.

Joint Symbol Detection and Channel Estimation Methods for an OFDM System in Fading Channels (페이딩 채널환경에서 OFDM 시스템에 대한 심볼 검출 및 채널 추정 기법)

  • Cho, Jin-Woong;Kang, Cheol-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • In this paper, we present the joint symbol detection and channel estimation for an orthogonal frequency division multiplexing (OFDM) system in fading channels. The proposed methods are based on decision-directed channel estimation (DDCE) method and their symbol detection is achieved by using Viterbi algorithm. This Viterbi decision-directed channel estimation (VDDCE) method tracks time-varying channels and detects a maximum likelihood symbol sequence. Recursive Viterbi decision-directed channel estimation (RVDDCE) method based on VDDCE method is proposed to shorten the detecting depth. In this method, channel estimate and Viterbi processing are recursively performed every interval of training symbol. Also, average chann'el estimation (ACE) technique to reduce the effect of additive white Gaussian noise (AWGN) is applied VDDCE method and RVDDCE method. These proposed methods arc demonstrated by computer simulation.

  • PDF

An Efficient symbol Synchronization Scheme with an Interpolator for Receiving in OFDM (OFDM 전송방식의 수신기를 위한 보간기의 효율적인 심볼 동기방법의 성능분석)

  • 김동옥;윤종호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.567-573
    • /
    • 2002
  • In this paper, we propose a new symbol time synchronization scheme suitable for the OFDM system with an interpolator. The proposed scheme performs the following three steps. In the first step, the coarse symbol time synchronization is achieved by continuously measuring the average power of the received envelope signal. Based on this average power, the detection possibility for the symbol time synchronization is determined. It the signal is sufficient for synchronization, we next perform a relatively accurate symbol time synchronization by measuring the correlation between a short training signal and the received envelope signal. Finally, an additional frequency synchronization is performed with a long training signal to correct symbol synchronization errors caused by the phase rotation. From the simulation results, one can see that the proposed synchronization scheme provides a good synchronization performance over frequency selective channels.

Symbol Decoding Schemes Combined with Channel Estimations for Coded OFDM Systems in Fading Channels. (페이딩 채널환경에서 CDFDM 시스템에 대한 채널 추정과 결합된 심볼검출 방법)

  • Cho, Jin-Woong;Kang, Cheol-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.9
    • /
    • pp.1-10
    • /
    • 2000
  • This paper proposes symbol decoding schemes combined with channel estimation techniques for coded orthogonal frequency division multiplexing (COFDM) systems in fading channels. sThe proposed symbol decoding schemes are consisted of a symbol decoding technique and channel estimation techniques. The symbol decoding based on Viterbi algorithm is achieved by matching the length of branch word from encoder trellis to the codeword length of symbol candidate on decoder trellis. Three combination schemes are described and their error performances are compared. The first scheme is to combine a symbol decoding technique with a training channel estimation technique. The second scheme joins a decision directed channel estimation technique to the first scheme. The time varying channel transfer functions are tracked by the decision directed channel estimation technique and the channel transfer functions used in the symbol decoder are updated every COFDM symbol. Finally, In order to reduce the effect of additive white Gaussian noise (AWGN) between adjacent subchannels, deinterleaved average channel estimation technique is combined. The error performances of the three schemes are significantly improved being compared with that of zero forcing equalizing schemes.

  • PDF

An effective channel estimation method considering channel response length in OFDM systems (OFDM에서 채널 응답 길이를 고려한 효율적인 채널추정 방법)

  • Jeon Hyoung-Goo;Choi Won-Chul;Lee Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.755-761
    • /
    • 2005
  • In this paper, we proposed a channel estimation method by impulse signal train in OFDM. In order to estimate the channel response, 4 impulse signals are generated and transmitted during one OFDM (Orthogonal Frequency Division Multiplexing) symbol. The intervals between the impulse signals are all equal in time domain. At the receiver, the impulse response signals are summed and averaged. And then, the averaged impulse response signal is zero padded and fast Fourier transformed to obtain the channel estimation. The BER performance of the proposed method is compared with those of conventional estimation method using the long training sequence in fast fading environments. The simulation results show that the proposed method improves by 3 dB in terms of Eb/No, compared with the conventional method.

An Algorithm of Optimal Training Sequence for Effective 1-D Cluster-Based Sequence Equalizer (효율적인 1차원 클러스터 기반의 시퀀스 등화기를 위한 최적의 훈련 시퀀스 구성 알고리즘)

  • Kang Jee-Hye;Kim Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.996-1004
    • /
    • 2004
  • 1-Dimensional Cluster-Based Sequence Equalizer(1-D CBSE) lessens computational load, compared with the classic maximum likelihood sequence estimation(MLSE) equalizers, and has the superiority in the nonlinear channels. In this paper, we proposed an algorithm of searching for optimal training sequence that estimates the cluster centers instead of time-varying multipath fading channel estimation. The proposed equalizer not only resolved the problems in 1-D CBSE but also improved the bandwidth efficiency using the shorten length of taming sequence to improve bandwidth efficiency. In experiments, the superiority of the new method is demonstrated by comparing conventional 1-D CBSE and related analysis.