• Title/Summary/Keyword: Train-wind

Search Result 253, Processing Time 0.03 seconds

Aerodynamic performance of a novel wind barrier for train-bridge system

  • He, Xuhui;Shi, Kang;Wu, Teng;Zou, Yunfeng;Wang, Hanfeng;Qin, Hongxi
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.171-189
    • /
    • 2016
  • An adjustable, louver-type wind barrier was introduced in this study for improving the running safety and ride comfort of train on the bridge under the undesirable wind environment. The aerodynamic characteristics of both train and bridge due to this novel wind barrier was systematically investigated based on the wind tunnel tests. It is suggested that rotation angles of the adjustable blade of the louver-type wind barrier should be controlled within $90^{\circ}$ to achieve an effective solution in terms of the overall aerodynamic performance of the train. Compared to the traditional grid-type wind barrier, the louver-type wind barrier generally presents better aerodynamic performance. Specifically, the larger decrease of the lift force and overturn moment of the train and the smaller increase of the drag force and torsional moment of the bridge resulting from the louver-type wind barrier were highlighted. Finally, the computational fluid dynamics (CFD) technique was applied to explore the underlying mechanism of aerodynamic control using the proposed wind barrier.

Investigation on Severe Aerodynamic Load Condition about Pantograph (판토그래프 가혹공력하중에 대한 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho;Chung, Kyung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.361-366
    • /
    • 2001
  • The present study describes a practical estimation procedure about the pantograph under several severe aerodynamic load conditions. As the operating speed of the Korean Train Express(KTX) reaches 350km/h, structural safety at various conditions should be examined at the design stage. In the present study, a compact and reliable procedure is developed to get aerodynamic loads on each part of the pantograph regarding the typhoon condition, the train/tunnel interaction, the train/train interaction and the side wind condition. In the estimation procedure, 3-dimensional steady and unsteady CFD simulation around the high speed train facilitates assigning the external local flow condition around the pantograph. The procedure is verified using the results of the low speed wind tunnel test at JARI and applied to 7 flow conditions and 4 operation configurations.

  • PDF

Field Measurements to Predict the Wind Gust under Train at the Speed-up of Conventional Railway Lines (기존선 고속화 시 열차 하부 열차풍 예측을 위한 현장 측정 시험)

  • Kwon, Hyeok-Bin;Nam, Seong-Won;Ko, Tae-Hwan;Jeon, Byung-Kill;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.376-381
    • /
    • 2010
  • In this study, field measurements on KTX, Nuriro and TTX train have been conducted at Kyeongbu and Honam line to predict the wind gust under train at the speed-up of major conventional railway lines using Kiel-probe array and multi-channel pressure scanning system. The results show that the average wind velocity during train passage normalized by train speed is independent to train speed, thus the wind gust for a given train type at the speed-up condition could be predicted. The relationship between the shape of underbody and the characteristics of the underbody wind gust has been discussed.

Analysis of the Effect of Wind on the Dynamic Behavior of High Speed Train (바람이 고속전철의 동적 안전성에 미치는 영향 분석)

  • 김영국;박찬경;박태원;배대성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.349-356
    • /
    • 2001
  • The dynamic behavior of high speed train is very Important because the railway should be safe and Is satisfied tilth the rode comfort of passengers. The train is composed of many suspension components. such as 1st springs, 1st dampers, 2nd springs and 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes, the track conditions and geometry and many environmental factors, such as rain, snow and wind. affect the dynamic behavior of high speed train. This paper reviews the effect of wind and track conditions on the dynamic behavior of high speed train. The VAMPIRE program Is used for this simulation. The result of simulation shows that the high speed train should not be operated when the wind velocity is beyond 34.5 m/sec.

  • PDF

Study on Potential Utility of Wind Power Generation Based on Driving Wind of High-Speed Trains (고속철도 열차 주행풍의 풍력발전 활용성에 대한 연구)

  • Kim, Je-Guen;Suh, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.681-687
    • /
    • 2017
  • We investigated the potential for wind-power generation using the wind produced by express trains. We built equipment to detect the wind velocity, including wind meters and a data analyzer. We considered various conditions that might change the wind. First, we measured the velocity and duration of the wind at three locations distinguished by the presence of a tunnel and a valley landscape. We analyzed the changes in the wind according to the geometric conditions. Also, we analyzed the changes in the wind according to three different heights relative to the train. We also compared the wind produced by a KTX train and an SRT train. Finally, we used the results to derive the wind power energy harvested from the wind and discuss the expected utility.

Track Measurements of Strong Wind under High-speed Train to Investigate Ballast-flying Mechanism (자갈비산 메커니즘 연구를 위한 고속철도차량 하부유동 계측)

  • Kwon H.B.;Park C.S.;Nam S.W.;Ko T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.369-373
    • /
    • 2005
  • To investigate the mechanism of ballast-flying phenomena by strong wind induced by high-speed trains, wind velocity in the vicinity of the track has been measured using 16-channel Kiel-probe array and detailed flow structure near the surface of the track has been analyzed. The position at which the underflow fully develop has been examined in order to assess the driving force of the turbulent flow under train and the results yields that the turbulent flow owing to the cavity of the inter-car as well as the friction force at the underbody of the train is the main reason of the strong wind under high-speed train. The preceding wind tunnel test results has been introduced to assess the probability of ballast-flying during the passage of the high-speed train by comparing the results from field-measuring. The results shows that when the G7 train as well as the KTX train runs at 300km/h, about 25m/s wind gust is induced just above the tie and the probability for small ballast under 50g to fly is about 50% when it is on the tie. If the G7 train runs at 350km/h, the wind gust just above the tie increases to 30m/s, therefore more radical countermeasure seems to be needed.

  • PDF

Nonlinear dynamic response analysis of a long-span suspension bridge under running train and turbulent wind

  • Wang, S.Q.;Xia, H.;Guo, W.W.;Zhang, N.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.309-320
    • /
    • 2010
  • With taking the geometric nonlinearity of bridge structure into account, a framework is presented for predicting the dynamic responses of a long-span suspension bridge subjected to running train and turbulent wind. The nonlinear dynamic equations of the coupled train-bridge-wind system are established, and solved with the Newmark numerical integration and direct interactive method. The corresponding linear and nonlinear processes for solving the system equation are described, and the corresponding computer codes are written. The proposed framework is then applied to a schemed long-span suspension bridge with the main span of 1120 m. The whole histories of the train passing through the bridge under turbulent wind are simulated, and the dynamic responses of the bridge are obtained. The results demonstrate that the geometric nonlinearity does not influence the variation tendency of the bridge displacement histories, but the maximum responses will be changed obviously; the lateral displacement of bridge are more sensitive to the wind than the vertical ones; compared with wind velocity, train speed affects the vertical maximum responses a little more clearly.

Running safety of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.207-222
    • /
    • 2020
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train subjected to fluctuating crosswind. To ensure the safe operation in metro lines in mountain cities, running safety of the metro train over the high-pier bridge under crosswind is analyzed in this paper. Firstly, the dynamic model of the wind-train-bridge (WTB) system is built, in which the speed-up effect of crosswind is fully considered. On the basis of time domain analysis, the basic characteristics of the WTB system with high-pier are analyzed. Afterwards, the dynamic responses varies with train speed and wind speed are calculated, and the safety zone of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city is determined. The results indicate that, fluctuating crosswind triggers drastic vibration to the metro train and high-pier bridges, which in turn causes running instability of the train. For this reason, the corresponding safety zone for metro train running on the high-pier is proposed, and the metro traffic on the high-pier bridge should be closed as the mean wind speed of standard height reaches 9 m/s (15.6 m/s for the train).

Evaluation of the Structural Stability of Platform Screen Door (PSD) due to Train Wind Pressure (열차 진입 시 풍압에 의한 완전 밀폐형 승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.594-600
    • /
    • 2006
  • In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the platform screen door due to train wind pressure. Fluent 6.0 was used to calculate the train wind pressure, and Ansys 10.0 was used to evaluate the structural stability of platform screen door due to train wind pressure. Transient analysis was used to check the design requirements of platform screen door, and quasi-static analysis was introduced to save the calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

Parametric Study of the Effects of Train Wind on Running Stability (열차풍 효과가 고속열차 주행안정성에 미치는 파라메타 연구)

  • Nam, Seong-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2519-2523
    • /
    • 2008
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed will save the construction cost. However the shortening the distance between track centers may cause the stability problems due to higher wind pressure. Therefore the extensive technical review and aerodynamical study should be performed to determine the adequate distance between track centers. In this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. We conducted the parametric study of the effects of train wind on the running stability.

  • PDF