• Title/Summary/Keyword: Train voltage

Search Result 231, Processing Time 0.028 seconds

A Study on Performance Evaluation of On-board Electric Device of TTX(Tilting Train Express) (틸팅열차(TTX)의 정장품 성능평가 연구)

  • Han, Seong-Ho;Lee, Su-Gil;Seo, Sung-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.239-242
    • /
    • 2005
  • This paper introduced an approach of improvement of performance of Electric device for EMU type Train like as TTX. The electric equipments are characterized by insulation, Noise, cooling system etc. and Their weight arc decided by these factors. There are two kinds of power source in EMU train. First, DC voltage source, 1500 volt, 750 volt is used for subway system. Second, AC power source 25000 volt is applied to high speed train and existing main lines. Composite material has the protection of inrush current and high frequency noise. We can use this material to minimize weight of train. Additionally we can get energy saving when operator service TTX.

  • PDF

A Protection Algorithm for DC Railway Systems Considering Train Starting (기동방식을 고려한 DC급전계통 보호알고리즘)

  • Kwon Y. J.;Choi D. M.;Kang S. H.;Han M. S.;Lee J. K.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.307-309
    • /
    • 2004
  • A DC railway system has low feeder voltage, The remote fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the train starting current. The train starting current increases step by step but the fault current increases all at once. So the type of $\bigtriangleup I\;relay(50F)$ was developed using the different characteristics between the load starting current and the fault current. As for the train starting current, the time constant of train current at each step is much smaller than that of the fault current. To detect faults in U railway systems, an algorithm that is independent of train starting current. This algorithm use the time constant calculated by the method of least squares is presented in this paper.

  • PDF

Study about flickering phenomenon of interior righting in electrical rail way train (전동차 실내조명의 flickering 현상에 관한 연구)

  • Kim M. R;Kim W. K;Back K. S;Lee K. W
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.617-622
    • /
    • 2003
  • Light Flickering of the lamp(fluorescent lamp) with voltage fluctuation operates as an factor harmful to train passengers which is subjective to them. Recently, international flickering standard(IEC61000-3-3) are applied all over the world. However, there are not any study preparing for regulation about light flickering inside running train. In this study, the Flicker phenomenon is investigated from several references and also how the flickermeter is configured and defined. Flicker evaluation using it are studied.

  • PDF

A Modeling and Analysis of Electric Railway System Using Constant Power Model (정전력모델을 이용한 전기철도 시스템의 회로 모델링 및 해석기법)

  • 홍재승;김주락;오광해;창상훈;김정훈
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.116-122
    • /
    • 2000
  • This paper presents a simulation method with constant power model for the train load. In power system simulation loads could be modeled as a constant power, constant current, constant Impedance or a function of voltage and frequency. At this time, however, representing a train load as the function is difficult because of the lack of data. Therefore as a first step, simulation method with a constant power model fer a train is studied, and the test result is compared with the simulation result using the constant Impedance model.

  • PDF

Reduction of Power Disturbance by Contact Loss Phenomenon of a High Speed Electric Train Using Passive Filters (수동필터를 이용한 고속전철 이선현상에 의한 전원외란 저감)

  • Chang, Chin-Young;Jin, Kang-Hwan;Kang, Jeong-Nam;Park, Dong-Kyu;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.206-211
    • /
    • 2010
  • Since high-speed train is a dynamic load in which electric power is externally supplied, contact loss between the catenary and pantograph occurs. This phenomena including vibrations generates frequently irregular arcs, which, in turn causes EMI. Thus it is very important to develop the approach to reduce arc phenomenon by contact loss, as speed of electric railway vehicle increases. In case of an electric railway vehicle using electrical power, compared with diesel rolling stock, Power Line Disturbance(PLD) such as harmonics, transient voltage and current, Electromagnetic Interference(EMI), and dummy signal injection etc usually occur. In this study, the dynamic characteristics of a contact wire and a pantograph suppling electrical power to high-speed train are investigated with an electrical response point. To implement power line disturbance induced by contact loss phenomenon for high speed train operation, a hardware simulator which considers contact loss between contact wire and pantograph as well as contact wire deviation is developed. It is confirmed by the experiments that contact loss effect is largely dependent on voltage conditions when the contact loss occurs. Also, a passive filter is designed to reduce power disturbance and the designed system is verified by experiment.

Modeling and Simulation Reactive Power Compensator using Multi-port Network Algorithm in Electrified Railway (다단자망 알고리즘을 이용한 급전시스템의 무효전력 보상 모델링 및 시뮬레이션)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.883-887
    • /
    • 2016
  • The power supply system in Korean electrified railway has adopted AT feeding. If a fault occurs in some substation for any reason, the vicinity substation must feed electric power on the outage substation through catenary. So, the feeding distance grows twice of the normal state at extended feeding condition. If substation's feeding distance is longer than normal condition, the catenary impedance and train to supply electric power from the substation. Therefore, the severe voltage drop can occur and power supply shall be not allowed. This paper presents the model of compensator against voltage drop using multi-port network algorithm. Whole traction power supply system can be analyzed with this model. Computer simulation including this model is performed based on real train schedule and increased schedule in case studies.

Development of Static Inverter for the Tilting Train express TTX (틸팅 차량용 보조전원장치의 개발)

  • Lee, Chang-Hee;Kim, Hyung-Cheol;Song, Young-Shin;Lee, Eun-Kyu;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1537-1539
    • /
    • 2005
  • This paper proposes 210[kVA] rated SIV(Static Inverter) system for the TTX(Tilting Train eXpress). The SIV provides power of a fluorescent light in the car, Air-conditioner, and other equipments. To control output voltage it is used voltage control loop for constant voltage control and simultaneously used current control loop for instantaneous control at load changing. The performance of SIV system will be verified by simulation and experimental results.

  • PDF

The Development of Equalizing Spacer for Minimization of Voltage Drop according to DC Feeder Extension (직류 급전선 증설에 따른 전압강하 최소화를 위한 균압 스페이서 개발)

  • Lee, Jae-Bong;Seo, Il-Kwon;Na, Youn-Il;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.1013-1018
    • /
    • 2014
  • This paper described the development of equalizing spacer for minimization of voltage drop according to DC feeder extension. Power consumption is increased as shorter interval of train driving time and transportation capacity increase in urban subway. Therefore we investigated voltage drop of catenary at a point in case of traction driving of a train in parallel to the DC power supply system. Based on it's result, equalizing spacer is designed and fabrication to minimize the voltage drop in accordance with the power supply line arranged in three rows, and then its performance was confirmed that the stress distribution of main body and the distributed load are satisfied through the body structure modeling.

Traction Characteristic of Korean High Speed Train (한국형 고속철도차량의 견인특성)

  • Han, Young-Jae;Kim, Seng-Won;Si, Sung-Il;Baik, Kwang-Sun;Hwang, Jun-Guk;Kno, Ae-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.432-434
    • /
    • 2003
  • The korean high speed train(350km/h), composed of 7cars that are 2 power cars, 2 motorized car and 3 trailer cars, has been developed and is under on-line test. To verify the design requirements about the functions and traction performances of this train, KRRI(Korea Railroad Research Institute) decided to evaluate traction performances of the train during on-line test. For this purpose, such as torque, velocity, voltage and current, must be measured. KRRI has developed the measurement system that can be measured vast and various signals effectively. In this paper, we introduce traction performances of korean high speed train. The traction measurement items are focused on the verification of motor block performances.

  • PDF

The Study on Development for Small-scale Super-speed Maglev Train (축소형 초고속 자기부상철도 개발에 관한 연구)

  • Han, Young-Jae;Jo, Jung-Min;Lee, Jin-Ho;Kim, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1497-1503
    • /
    • 2016
  • This paper presents the overall measurement system for on-line test of super-speed maglev train. The super-speed maglev train is composed of vehicle, propulsion, power, and so on. In order to evaluate and diagnose for sub-system, we made overall measurement system. Just like the other measurement system, it is designed to distributed type. The hardware is consist of SCXI, PXI, Terminal, UPS, and so forth. It is installed on a train, control room, power room and track to collect lots of signals. The software controls hardware system, monitors main data such as inverter current, converter voltage. Using the measurement system, we evaluated a lot of performances for vehicle, track, and so forth. Through the developed system have improved reliability and safety for super-speed maglev train.