목표물 탐지 및 인식은 신경망의 적용이 활발한 하나의 분야로서, 일반적인 형태인식 문제들의 요구 사항에 추가적으로 translation invariance와 실시간 처리를 요구한다. 본 논문에서는 이러한 요구 사항을 만족하는 새로운 신경망의 구조를 소개하고, 이의 효과적인 학습 방법을 설명한다. 제안된 신경망은 특징 추출 단계와 형태 인식 단계가 연속(Cascade)된 가중치 공유 신경망(Shared-weight Neural Network)을 기본으로하여 이를 확장한 형태이다. 이 신경망의 특징 추출 단계는 입력에 가중치 창(weight kernel)으로 코릴레이션 형태의 연산을 수행하며, 신경망 전체를 하나의 2차원 비선형 코릴레이션 필터로 볼 수 있다. 따라서, 신경망의 최종 출력은 목표물 위치에 첨예(peak)값을 갖는 코릴레이션 평면이다. 이 신경망이 갖는 구조는 병렬 또는 분산 처리 컴퓨터로의 구현에 매우 적합하며, 이러한 사실은 실시간 처리가 중요한 요인이 되는 문제에 적용할 수 있음을 의미한다. 목표물과 비목표물간의 숫자상 불균형으로 인하여 초래되는 오경보(false alarm) 발생의 문제를 극복하기 위한 새로운 학습 방법도 소개한다. 성능 검증을 위하여 제안된 신경망을 주차장내에서 이동하는 특정 차량의 탐지 및 인식 문제에 적용하였다. 그 결과 오경보 발생이 없었으며, 중형급 컴퓨터를 이용하여 약 190Km로 이동하는 차량의 추적이 가능한 정도의 빠른 처리 결과를 보여 주었다.
Background: Subway stations have the characteristics of being located underground and are a representative public-use facility used by an unspecified number of people. As concerns about indoor air quality (IAQ) increase, various management measures are being implemented. However, there are few systematic studies and cases of long-term continuous measurement of underground station air quality. Objectives: The purpose of this study is to analyze changes and factors influencing IAQ in subway stations through real-time continuous long-term measurement using IoT-based IAQ sensing equipment, and to evaluate the IAQ improvement effect of a bio-filter system. Methods: The IAQ of a subway station in Seoul was measured using IoT-based sensing equipment. A bio-filter system was installed after collecting the background concentrations for about five months. Based on the data collected over about 21 months, changes in indoor air quality and influencing factors were analyzed and the reduction effect of the bio-filter system was evaluated. Results: As a result of the analysis, PM10, PM2.5, and CO2 increased during rush hour according to the change in the number of passengers, and PM10 and PM2.5 concentrations were high when a PM warning/watch was issued. There was an effect of improving IAQ with the installation of the bio-filter system. The reduction rate of a new-bio-filter system with improved efficiency was higher than that of the existing bio-filter system. Factors affecting PM2.5 in the subway station were the outdoor PM2.5, platform PM2.5, and the number of passengers. Conclusions: The IAQ in a subway station is affected by passengers, ventilation through the air supply and exhaust, and the spread of particulate matter generated by train operation. Based on these results, it is expected that IAQ can be efficiently improved if a bio-filter system with improved efficiency is developed in consideration of the factors affecting IAQ and proper placement.
대부분 딥러닝 모델의 학습은 입력값과 입력값에 따른 출력값이 포함된 레이블링 데이터(labeling data)를 학습하는 지도 학습(supervised learning)으로 진행된다. 레이블링 데이터는 인간이 직접 제작하므로 데이터의 정확도가 높다는 장점이 있지만 비용과 시간의 문제로 인해 데이터의 확보에 많은 노력이 소요된다. 그리고 지도 학습의 목표는 정탐지 데이터(true positive data)의 인식 성능 향상에 초점이 맞추어져 있으며, 오탐지 데이터(false positive data)의 발생에 대한 대처는 미흡한 실정이다. 본 논문은 터널 관제센터에 투입된 딥러닝 모델 기반 영상유고 시스템의 모니터링을 통해 정탐지와 레이블링 데이터의 학습으로 예측하기 힘든 오탐지의 발생을 확인하였다. 오탐지의 유형은 작업차량의 경광등, 터널 입구부에서 반사되는 햇빛, 차선과 차량의 일부에서 발생하는 길쭉한 검은 음영 등이 화재와 보행자로 오탐지되고 있었다. 이러한 문제를 해결하기 위해 현장에서 발생한 오탐지 데이터와 레이블링 데이터를 동시에 학습하여 딥러닝 모델을 개발하였으며, 그 결과 기존 레이블링 데이터만 학습한 모델과 비교하면 레이블링 데이터에 대한 재추론 성능이 향상됨을 알 수 있었다. 그리고 오탐지 데이터에 대한 재추론을 한 결과 오탐지 데이터를 많이 포함하여 학습한 모델일 경우 보행자의 오탐지 개수가 훨씬 줄었으며, 오탐지 데이터의 학습을 통해 딥러닝 모델의 현장 적용성을 향상시킬 수 있었다.
철도통합무선망(LTE-R) 환경이 구축되었고, 이를 활용한 무선통신 기반의 열차제어 데이터 및 음성, 영상 등 다양한 형태의 서비스 인프라 관련 연구개발이 진행되고 있다. 이러한 서비스가 원활하게 제공되기 위해서는 안정성 및 가용성 높은 무선통신 환경 구성이 중요하며, 지속적인 철도통합무선망의 성능 개선이 요구된다. 본 논문은 철도통합무선망 안정성 및 가용성 등의 무선통신 성능개선을 위해 철도통합무선망 무선통신 환경을 측정하여 결과를 분석하고 시뮬레이션을 위한 무선 환경 모델을 구축하였다. 또한, 구축된 모델을 기반으로 안정성 향상을 위해 열차를 제어하기 위한 향상된 무선접속 알고리즘을 제안하여 열차 운행 시 발생하는 핸드오버에 대해 안정성을 향상 시킬 수 있는 방법을 제안하였고 가용성 향상을 위해 주파수 자동천이 알고리즘을 제안하여 망 장애로 인한 패킷 손실을 줄이고자 한다. 시뮬레이션을 위해, 철도통합무선망 무선통신 환경의 실측 데이터를 측정할 수 있는 철도시설공단(대전), 만종역-강릉역 KTX 노선에서 다양한 무선 환경 파라메터를 수집하였으며 본 논문에서 제안한 알고리즘의 성능이 기존 방식보다 우수함을 시뮬레이션 결과를 통하여 확인하였다.
최근 공공장소 및 시설에서 범죄예방 및 시설 안전을 목적으로 영상정보 기반의 인체의 행위를 분류하는 연구가 활발히 진행되고 있다. 이러한 인체 행위분류의 성능을 향상하기 위해서 대부분의 연구는 전이학습 기반의 딥러닝을 적용하고 있다. 그러나 딥러닝의 기반이 되는 중추 네트워크 모델(Backbone Network Model)의 수가 증가하고 아키텍처가 다양해짐에도 불구하고, 소수의 모델만 사용하는 분위기 때문에 운용목적에 적합한 중추 네트워크 모델을 찾는 연구는 미흡한 실정이다. 본 연구는 영상정보를 기초로 인체 행위를 분류하는 인공지능 모델을 개발하기 위해 최근에 개발된 5가지의 딥러닝 중추 네트워크 모델을 대상으로 전이학습을 적용하고 각 모델의 정확도 및 학습효율 측면에서 비교 및 분석하여 가장 효율이 높은 모델을 제안하였다. 이를 위해, 기본적인 인체 행위가 아닌 운동 종목 기반의 활동적이고 신체접촉이 높은 12가지의 인체 활동을 선정하고 관련된 7,200개의 이미지를 수집하였으며, 5가지의 중추 네트워크 모델에 총 20회의 전이학습을 균등하게 적용하고 학습과정과 결과성능을 통해 인체 행위를 분류하는데 적합한 중추 네트워크 모델을 정량적으로 비교 및 분석하였다. 그 결과 XceptionNet 모델이 학습 및 검증 정확도에서 0.99 및 0.91로, Top 2 및 평균 정밀도에서 0.96 및 0.91로 나타났으며 학습 소요시간은 1,566초, 모델용량의 크기는 260.4MB로 정확도와 학습효율 측면에서 다른 모델보다 높은 성능이 나타남을 확인할 수 있었다. 이러한 결과는 전이학습을 적용하여 인체 행위분류를 진행하는 다양한 연구 분야에 활용되기를 기대한다.
철도 승강장은 승객, 열차 운행의 안전 및 철도 시설에 대한 이미지와 밀접한 관련이 있는 중요 시설물로 철저한 시설관리가 필요하다. 그러나 승강장 연단부에서 이질재료의 줄눈 마감을 위한 마감재가 선로방향으로 탈락하는 현상이 전국에서 다발적으로 발생하고 있어 열차 운행 안정성 및 이용객의 안전 확보를 위해 즉각적이고 지속적인 관리가 필요한 상황이다. 본 연구는 승강장 연단부에서 발생하는 마감재의 탈락 현상에 대한 분석을 통해 개선방안을 도출하고자 하였다. 이를 위해 200여 곳의 철도 역사 승강장 연단부에 대한 마감재 탈락 현황과 이와 관련된 국가철도공단의 설계·시공 기준이 조사되었다. 이후 해당 내용을 기반으로 마감재 탈락 원인이 분석되었으며 그 결과 주된 원인은 시공 중 발생하는 노반-건축 공정 간 경계인 것으로 도출되었다. 이후 도출된 원인과 설계 및 시공기준을 연계하여 (1)마감재료 또는 시공방법 개선, (2)높이 조절 용이한 마감재료, (3)별도 마감방법 고안, (4)마감재의 공정방법 및 내구성과 관련된 개선방안을 제시하였다.
Maglev rail joints are vital components serving as connections between the adjacent F-type rail sections in maglev guideway. Damage to maglev rail joints such as bolt looseness may result in rough suspension gap fluctuation, failure of suspension control, and even sudden clash between the electromagnets and F-type rail. The condition monitoring of maglev rail joints is therefore highly desirable to maintain safe operation of maglev. In this connection, an online damage detection approach based on three-dimensional (3D) convolutional neural network (CNN) and time-frequency characterization is developed for simultaneous detection of multiple damage of maglev rail joints in this paper. The training and testing data used for condition evaluation of maglev rail joints consist of two months of acceleration recordings, which were acquired in-situ from different rail joints by an integrated online monitoring system during a maglev train running on a test line. Short-time Fourier transform (STFT) method is applied to transform the raw monitoring data into time-frequency spectrograms (TFS). Three CNN architectures, i.e., small-sized CNN (S-CNN), middle-sized CNN (M-CNN), and large-sized CNN (L-CNN), are configured for trial calculation and the M-CNN model with excellent prediction accuracy and high computational efficiency is finally optioned for multiple damage detection of maglev rail joints. Results show that the rail joints in three different conditions (bolt-looseness-caused rail step, misalignment-caused lateral dislocation, and normal condition) are successfully identified by the proposed approach, even when using data collected from rail joints from which no data were used in the CNN training. The capability of the proposed method is further examined by using the data collected after the loosed bolts have been replaced. In addition, by comparison with the results of CNN using frequency spectrum and traditional neural network using TFS, the proposed TFS-CNN framework is proven more accurate and robust for multiple damage detection of maglev rail joints.
철도차량기지에서는 철도차량의 안전한 운행을 위해 연간검수 이상의 기기보전(지정보전, 장치보전), 차체 보전을 위한 장기계획에 의해 종합적인 유지보수 혹은 중대사고에 의한 차량의 파손으로 인한 차량의 보수작업이 이루어지는 중수선 작업을 수행한다. 본 연구에서는 용산기지 이전과 관련하여 대전철도차량관리단 부지 내에 계획 중인 CDC(Commuter Diesel Car)와 발전차를 정비하는 중수선 시설의 설계안에 대한 검증을 위한 시뮬레이션 모델을 개발하고 시뮬레이션 실험을 통하여 중수선 시설의 용량을 검증하였다. 시뮬레이션 모델은 철도공사의 중정비 검수공정도를 바탕으로 2가지 설계안의 설계용량을 검증하였다. 2가지 설계안을 평가하기 위하여 검수 완료 차량, 재장일, 작업장 점유율, 공정진행 차량수 및 입장검사 대기차량수 등 5가지를 분석하여 연간 검수용량이 충분한 설계안을 선정 하였다. 또한 우수한 결과를 보인 설계안의 연간 최대 검수 가능한 차량 수는 현재 연간 검수량 보다 약 15% 많은 총 340량임을 확인할 수 있었다.
Since last year, the government has enforced the 'Act on the Punishment of Severe Accidents, Etc.' (hereafter referred to as the 'Serious Accident Punishment Act'), which punishes business owners and business managers who fail to fulfill their duty of safety measures with 'imprisonment of one year or more' and the Occupational Safety and Health Act. Based on this, various occupational safety and health policies were developed, including the operation of a system related to entrusting the work of safety managers. Despite these efforts, the effect of implementing the Severe Accident Punishment Act is a groundbreaking change in the current disaster prevention policy, which has increased by 0.02%P and 0.03‱P, respectively, from the previous year to 0.65% of the total accident rate and 1.10‱ of the death rate per 10,000 people as of 2022. As the need emerged, attention was paid to 'collaboration and governance with safety management institutions' in the 'Severe Disaster Reduction Roadmap' announced by the Ministry of Employment and Labor in November 2022. In this study, a meaningful result was derived by comparing and analyzing the industrial accident status of workplaces entrusted by "A" safety management institutions with the national average based on the industrial accident survey table, and the types of industrial accidents that occurred in consigned workplaces were selected as intensive management targets. The policy direction for industrial accident prevention was established. It is necessary to develop safety management work manuals based on the results of this study, expertise, discover best cases of risk assessment and develop guides, and educate and train consigned workers. In addition, it suggests that the government's guidance and supervision are needed to advance the professionalism of safety management entrusted tasks, and that safety management institutions should strengthen their roles and functions for preventing and reducing industrial accidents. However, due to difficulties in disclosing information of specialized safety management institutions, the limitation of the provision, collection, and viewing of research-related data to "A" specialized safety management institutions remains a limitation of the research. It seems likely that more thorough research will be conducted.
Jae Sok Oh;Chan Park;Kang-Min Kim;Heeyoung Oh;UeeJeong Jeong;Moo-Young Chun;Young Sam Yu;Sungho Lee;Jeong-Gyun Jang;Bi-Ho Jang;Sung-Joon Park;Jihun Kim;Yunjong Kim;Andrew Szentgyorgyi;Stuart McMuldroch;William Podgorski;Ian Evans;Mark Mueller;Alan Uomoto;Jeffrey Crane;Tyson Hare
천문학회지
/
제56권2호
/
pp.169-185
/
2023
The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.