• Title/Summary/Keyword: Train carriage

Search Result 23, Processing Time 0.024 seconds

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.

The Manufacturing Technology of TTX Composite Train Carbody Using a Autoclave Molding Process (오토클레이브 성형기법에 의한 TTX 복합재 차체 제작 기술)

  • Shin, Kwang-Bok;Ryu, Bong-Jo;Lee, Sang-Jin;Jung, Jong-Cheol;Cho, Se-Hyun;Kim, Jung-Seok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.207-211
    • /
    • 2005
  • The Korean Tilting Train eXpress (TTX) with service speed of 180km/h have been developing using hybrid design concept combined with a sandwich composite structure for the carbody and stainless steel structure for the underframe to match the challenging demands with respect to cost efficient lightweight design for railway carriage structures. The sandwich composite structure was used to minimize the weight of the carbody, while the metal underframe was used to modify the design easily and to keep the strength of underframe for the installation of the electrical equipments. The sandwich composite structure was 23 meters long, 3 meters wide and 2.7 meters high, and cured as one body in a large autoclave equipment with the length of 30 meters and the diameter of 5 meters. The joint part between the carbody structure made of sandwich composites and the metal underframe was joined by the proposed design.

  • PDF

A study on Fairing System for Traveling Noise Reduction in Urban Subway (도시철도 운행소음 저감용 훼어링시스템 연구)

  • Choi, Sang-Chun;Jang, Won-Rak;Ho, Kyoung-Chan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.659-666
    • /
    • 2009
  • As the density and height of the buildings nearby subway lines get higher, the unprecedented residents' appeals for noise are on the rise. Furthermore, in accordance with the revision of enforcement regulations on the Noise and Vibration Control Act, the night time noise standards have been reinforced by 5dB effective on January 1st 2010 and the appropriate measures shall be taken accordingly. For the settlement of the public grievances against noise and vibration generated on tracks in at-grade and elevated section, the installation of continuously-welded-rail, rail lubrication system, improved fastening system and higher noise barrier is currently executed. Nevertheless, the noise and vibration levels in some areas are still exceeding the limits required in the regulation. Among the measures, an installation of higher noise barrier or noise tunnel seems to be the most effective way; however, it has limitations owing to the structural stability of existing elevated structures. The paper in consideration of the local conditions and foreign practices discusses the installation of fairing system under the train body as an noise insulation panel in order to reduce the rolling noise and under-carriage noise. Based on the result of this study, a performance verification test during actual train operation is in progress for further study.

  • PDF

Serviceability assessment of subway induced vibration of a frame structure using FEM

  • Ling, Yuhong;Gu, Jingxin;Yang, T.Y.;Liu, Rui;Huang, Yeming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • It is necessary to predict subway induced vibration if a new subway is to be built. To obtain the vibration response reliably, a three-dimensional (3D) FEM model, consisting of the tunnel, the soil, the subway load and the building above, is established in MIDAS GTS NX. For this study, it is a six-story frame structure built above line 3 of Guangzhou metro. The entire modeling process is described in detail, including the simplification of the carriage load and the determination of model parameters. Vibration measurements have been performed on the site of the building and the model is verified with the collected data. The predicted and measured vibration response are used together to assess vibration level due to the subway traffic in the building. The No.1 building can meet work and residence comfort requirement. This study demonstrates the applicability of the numerical train-tunnel-soil-structure model for the serviceability assessment of subway induced vibration and aims to provide practical references for engineering applications.

High-Speed EMU : Basic Research on the Noise Reduction (동력분산형 고속철도 : 소음저감기술의 기초 연구)

  • Hong, Yun-H.;Kim, Jeung-T.;Kim, Jung-Soo;Kim, Seock-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1441-1447
    • /
    • 2008
  • This research studies the effects of community noise around railway, noise from the inside/outside noise of the High-Speed EMU. First study part of this year is research of the noise source. The modeling methodology for prediction of noise level including the frequency property, velocity dependence, sound pressure of noise source is investigate. Second part is research on the sound transmission loss. An exclusive program which could analyze the sound transmission loss of the floor, the sides(mirror), insulator in High-Speed EMU has to be developed. Third part is research on the train inside/outside and Prediction for community Noise. In order to predict the noise when the High-Speed EMU is traveling at the outside and along tunnels, the result of the research can be derived by evaluating the effect of the noise on the upper/middle parts of the carriage and on the railroad way round about with using the program.

  • PDF

A transient CFD simulation of ventilation system operation for smoke control in a subway station equipped with a Platform Screen Door(PSD) when a train under fire is approaching the station (화재열차의 역사 접근 시 PSD가 설치된 역사 제연을 위한 환기장치 운전 비정상상태 해석)

  • Shin, Kyu-Ho;Hur, Nahm-Keon;Won, Chan-Shik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.269-272
    • /
    • 2006
  • The heat and smoke which generated by subway under fire is one of the most harmful factor in air tighten underground station. To prevent this, Trackway Exhaust System(TES) can be used. The heat released from the train running in the tunnel raises the temperature at the platform and the trackway, and thus proper ventilation system is required for comfortable underground environment. When the fire is occurred, TES is operated as smoke exhaust mode from normal ventilation mode. In the present study, the subway station which is one of the line number 9 in Seoul subway is modeled, and fired situation is simulated with several ventilation mode of ventilation system in trackway. For this simulation whole station is modeled. Non steady state 3D simulation which considered train under fire is entering to the station is performed. Temperature and smoke distribution in platform and trackway are compared. To represent heat by fire, heat flux was given to the fired carriage, also to describe smoke by fire, concentration of CO is represented. As the result of present study, temperature and smoke distribution is different as the method of ventilation in trackway and platform is changed. In over side of trackway, the fan must be operated as exhaust mode for efficient elimination of heat and smoke, and supply mode of fan operation in under side shows better distribution of heat and smoke. The ventilation system which is changed from ventilation mode to exhaust mode can be applied to control heat and smoke under fire.

  • PDF

A Numerical Study of Ventilation System Operation for Smoke Control in a Subway Station when a Train under Fire is Approaching (화재열차가 진입하여 정차하는 지하철 역사에서 제연을 위한 환기장치 운전에 대한 수치해석 연구)

  • Lee, Seung-Ho;Hur, Nahm-Keon;Cha, Chul-Hyun;Ryou, Hong-Sun;Kim, Dong-Hyeon;Jang, Yong-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.136-141
    • /
    • 2009
  • The platform screen door(PSD) is installed in the station of the Seoul Metro 9th line for passengers' safety and comfortable environment of the station. The track way exhaust system(TES) is also operated with PSD to exhaust heat released from train. TES can also be used for the purpose of the heat and smoke control in an emergency case of the carriage fire. When the fire is occurred, operation of TES is switched to the smoke exhaust mode form its normal ventilation mode. In the present study, a subway station of Seoul Metro 9th line is modeled, and a 3-D CFD simulation is performed to investigate effectiveness of designed TES in case of fire. A scenario that a train under fire is arriving the station is simulated for several possible operation modes of the TES using moving mesh technique. As a result, temperature and CO concentration distribution in the station is obtained for each operation modes of TES. The effectiveness of TES operation in case of fire is also discussed.

  • PDF

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.

Evaluation of Rail Parcel Service and Policy Recommendations (철도소화물 운송사업에 관한 연구)

  • Mun, Jin-Su;Jeon, Il-Su;Kim, Min-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.67-79
    • /
    • 2006
  • The carriage of the Parcel by vail has declined sharply in recent decade due to the advent of parcel service by truck in the early 1990s. As a result, rail stations Providing the parcel services have decreased from 421 stations in the year 1973, to only 90 stations in 2005. From the financial perspective, the Parcel consignment expenses has surpassed the revenue, recording 5.2 billion Won of yearly deficit from the year 1999 to 2003. The shift in the train operators' affiliation from a governmental department to a government-funded organization arose due to the vail reform in January 1, 2005, and the train operators have sought to abolish the parcel services to minimize the deficit. In this research. we investigated the problems of rail parcel services, their competitiveness compared to the road parcel services, and their revitalization Possibilities. Finally. we have proposed plans for the abolishment of the rail parcel services, and assessed the possible outcome or this abolishment.