• Title/Summary/Keyword: Trafficking

Search Result 179, Processing Time 0.049 seconds

Physiological functions of the TRPM4 channels via protein interactions

  • Cho, Chang-Hoon;Lee, Young-Sun;Kim, Eunju;Hwang, Eun Mi;Park, Jae-Yong
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are $Ca^{2+}$-activated $Ca^{2+}$-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases.

Chrysanthemum Chlorotic Mottle Viroid-Mediated Trafficking of Foreign mRNA into Chloroplasts

  • Baek, Eseul;Park, Minju;Yoon, Ju-Yeon;Palukaitis, Peter
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.288-293
    • /
    • 2017
  • Chrysanthemum chlorotic mottle viroid (CChMVd) fused to the leader sequence of a reporter gene (mRFP) expressed transiently in agroinfiltrated Nicotiana benthamiana, was used to show that CChMVd can traffic into chloroplasts, thought to be the site of its replication. Fluorescence from mRFP was detected in chloroplasts, but only if the viroid transcription fusions were present, either from the full-length 400-nt CChMVd, or each of two partial fragments (nucleotides 125 to 2 and 231 to 372). The mRFP and its mRNA were detected by western blotting and RT-PCR, respectively, in tissue extracts of plants infiltrated by each fusion construct. Isolated chloroplasts were shown by RT-PCR to contain the RNA sequences of both CChMVd and mRFP, if both were present, but not the mRFP sequence in the absence of the viroid sequences. The results suggest that RNA trafficking was probably due to an RNA structure, and not a particular sequence, as discussed.

Radiation Detection System for Prevention of Illicit Trafficking of Nuclear and Radioactive Materials

  • Kwak, Sung-Woo;Chang, Sung-Soon;Yoo, Ho-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.167-171
    • /
    • 2010
  • Fixed radiation portal monitors (RPMs) deployed at border, seaport, airport and key traffic checkpoints have played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM is usually large and heavy and can't easily be moved to different locations. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for search and detection of nuclear and radioactive materials during road transport. Field tests to characterize the developed detection system were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of measurements and detection limits of our system are described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle.

C-terminal truncation of a bovine B12 trafficking chaperone enhances the sensitivity of the glutathione-regulated thermostability

  • Jeong, Jinju;Park, Jihyun;Lee, Dong-Yeon;Kim, Jihoe
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.169-174
    • /
    • 2013
  • The human $B_{12}$ trafficking chaperone hCblC is well conserved in mammals and non-mammalian eukaryotes. However, the C-terminal ~40 amino acids of hCblC vary significantly and are predicted to be deleted by alternative splicing of the encoding gene. In this study, we examined the thermostability of the bovine CblC truncated at the C-terminal variable region (t-bCblC) and its regulation by glutathione. t-bCblC is highly thermolabile ($T_m={\sim}42^{\circ}C$) similar to the full-length protein (f-bCblC). However, t-bCblC is stabilized to a greater extent than f-bCblC by binding of reduced glutathione (GSH) with increased sensitivity to GSH. In addition, binding of oxidized glutathione (GSSG) destabilizes t-bCblC to a greater extent and with increased sensitivity as compared to f-bCblC. These results indicate that t-bCblC is a more sensitive form to be regulated by glutathione than the full-length form of the protein.

Sub-Ciliary Segregation of Two Drosophila Transient Receptor Potential Channels Begins at the Initial Stage of Their Pre-Ciliary Trafficking

  • Kwon, Youngtae;Lee, Jeongmi;Chung, Yun Doo
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1002-1010
    • /
    • 2020
  • Cilia are important eukaryotic cellular compartments required for diverse biological functions. Recent studies have revealed that protein targeting into the proper ciliary subcompartments is essential for ciliary function. In Drosophila chordotonal cilium, where mechano-electric transduction occurs, two transient receptor potential (TRP) superfamily ion channels, TRPV and TRPN, are restricted to the proximal and distal subcompartments, respectively. To understand the mechanisms underlying the sub-ciliary segregation of the two TRPs, we analyzed their localization under various conditions. In developing chordotonal cilia, TRPN was directly targeted to the ciliary tip from the beginning of its appearance and was retained in the distal subcompartment throughout development, whereas the ciliary localization of TRPV was considerably delayed. Lack of intraflagella transport-related proteins affected TRPV from the initial stage of its pre-ciliary trafficking, whereas it affected TRPN from the ciliary entry stage. The ectopic expression of the two TRP channels in both ciliated and non-ciliated cells revealed their intrinsic properties related to their localization. Taken together, our results suggest that sub-ciliary segregation of the two TRP channels relies on their distinct intrinsic properties, and begins at the initial stage of their pre-ciliary trafficking.