• Title/Summary/Keyword: Traffic volume data imputation

Search Result 7, Processing Time 0.015 seconds

Considering of the Rainfall Effect in Missing Traffic Volume Data Imputation Method (누락교통량자료 보정방법에서 강우의 영향 고려)

  • Kim, Min-Heon;Oh, Ju-Sam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • Traffic volume data is basic information that is used in a wide variety of fields. Existing missing traffic volume data imputation method did not take the effect on the rainfall. This research analyzed considering of the rainfall effect in missing traffic volume data imputation method. In order to consider the effect of rainfall, established the following assumption. When missing of traffic volume data generated in rainy days it would be more accurate to use only the traffic volume data of the past rainy days. To confirm this assumption, compared for accuracy of imputed results at three kinds of imputation method(Unconditional Mean, Auto Regression, Expectation-Maximization Algorithm). The analysis results, the case on consideration of the rainfall effect was more low error occurred.

A Study on Imputing the Missing Values of Continuous Traffic Counts (상시조사 교통량 자료의 결측 보정에 관한 연구)

  • Lee, Sang Hyup;Shin, Jae Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2009-2019
    • /
    • 2013
  • Traffic volumes are the important basic data which are directly used for transportation network planning, highway design, highway management and so forth. They are collected by two types of collection methods, one of which is the continuous traffic counts and the other is the short duration traffic counts. The continuous traffic counts are conducted for 365 days a year using the permanent traffic counter and the short duration traffic counts are conducted for specific day(s). In case of the continuous traffic counts the missing of data occurs due to breakdown or malfunction of the counter from time to time. Thus, the diverse imputation methods have been developed and applied so far. In this study the applied exponential smoothing method, in which the data from the days before and after the missing day are used, is proposed and compared with other imputation methods. The comparison shows that the applied exponential smoothing method enhances the accuracy of imputation when the coefficient of traffic volume variation is low. In addition, it is verified that the variation of traffic volume at the site is an important factor for the accuracy of imputation. Therefore, it is necessary to apply different imputation methods depending upon site and time to raise the reliability of imputation for missing traffic values.

Missing Imputation Methodologies for Daily Traffic Counts by Transforming Time Data into Spatial Data (시간자료의 공간화를 통한 일교통량 결측대체 방법론 연구)

  • Heo, Tae-Young;Oh, Ju-Sam
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.21-28
    • /
    • 2007
  • We suggest a new spatial linear interpolation method to substitute linear interpolation method which widely used in transportation engineering to impute the missing daily traffic volume. We layout daily traffic volume which is time series data over the virtual lattice space to consider the spatial correlation. We used Moran Index to evaluate the spatial correlations among daily traffic volume in same week and same date traffic volume by week considering the circularity of daily traffic volume. For real application, we used daily traffic volume on November, 2004 provided by Korea Institute of Construction Technology(KICT) and transformed daily traffic volume to 4 times 7 virtual lattice space to reflect the spatial correlation. Finally we showed that the spatial linear interpolation method has good performance for missing data imputation based on MAPE, RMSE, and Theil's U criteria.

  • PDF

Modelling Missing Traffic Volume Data using Circular Probability Distribution (순환확률분포를 이용한 교통량 결측자료 보정 모형)

  • Kim, Hyeon-Seok;Im, Gang-Won;Lee, Yeong-In;Nam, Du-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.109-121
    • /
    • 2007
  • In this study, an imputation model using circular probability distribution was developed in order to overcome problems of missing data from a traffic survey. The existing ad-hoc or heuristic, model-based and algorithm-based imputation techniques were reviewed through previous studies, and then their limitations for imputing missing traffic volume data were revealed. The statistical computing language 'R' was employed for model construction, and a mixture of von Mises probability distribution, which is classified as symmetric, and unimodal circular probability were finally fitted on the basis of traffic volume data at survey stations in urban and rural areas, respectively. The circular probability distribution model largely proved to outperform a dummy variable regression model in regards to various evaluation conditions. It turned out that circular probability distribution models depict circularity of hourly volumes well and are very cost-effective and robust to changes in missing mechanisms.

A Study on the Imputation for Missing Data in Dual-loop Vehicle Detector System (차량 검지자료 결측 보정처리에 관한 연구 (이력자료 활용방안을 중심으로))

  • Kim, Jeong-Yeon;Lee, Yeong-In;Baek, Seung-Geol;Nam, Gung-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.27-40
    • /
    • 2006
  • The traffic information is provided, which based on the volume of traffic, speed, occupancy collected through the currently operating Vehicle Detector System(VDS). In addition to the trend in utilization fold of traffic information is increasing gradually with the applied various fields and users. Missing data in Vehicle detector data means series of data transmitted to controller without specific property. The missing data does not have a data property, so excluded at the whole data Process Hence, increasing ratio of missing data in VDS data inflicts unreliable representation of actual traffic situation. This study presented the imputation process due out which applied the methodologies that utilized adjacent stations reference and historical data utilize about missing data. Applied imputation process methodologies to VDS data or SeoHaeAn/Kyongbu Expressway, currently operation VDS, after processes at missing data ratio of an option. Imputation process held presented to per lane-30seconds-period, and morning/afternoon/daily time scope ranges classified, and analyzed an error of imputed data preparing for actual data. The analysis results, an low error occurred relatively in the results of the imputation process way that utilized a historical data compare with adjacent stations reference methods.

Study on Imputation Methods of Missing Real-Time Traffic Data (실시간 누락 교통자료의 대체기법에 관한 연구)

  • Jang Jin-hwan;Ryu Seung-ki;Moon Hak-yong;Byun Sang-cheal
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.45-52
    • /
    • 2004
  • There are many cities installing ITS(Intelligent Transportation Systems) and running TMC(Trafnc Management Center) to improve mobility and safety of roadway transportation by providing roadway information to drivers. There are many devices in ITS which collect real-time traffic data. We can obtain many valuable traffic data from the devices. But it's impossible to avoid missing traffic data for many reasons such as roadway condition, adversary weather, communication shutdown and problems of the devices itself. We couldn't do any secondary process such as travel time forecasting and other transportation related research due to the missing data. If we use the traffic data to produce AADT and DHV, essential data in roadway planning and design, We might get skewed data that could make big loss. Therefore, He study have explored some imputation techniques such as heuristic methods, regression model, EM algorithm and time-series analysis for the missing traffic volume data using some evaluating indices such as MAPE, RMSE, and Inequality coefficient. We could get the best result from time-series model generating 5.0$\%$, 0.03 and 110 as MAPE, Inequality coefficient and RMSE, respectively. Other techniques produce a little different results, but the results were very encouraging.

  • PDF