• Title/Summary/Keyword: Traffic safety Speed

Search Result 497, Processing Time 0.026 seconds

Stochastic Channel Modeling for Railway Tunnel Scenarios at 25 GHz

  • He, Danping;Ai, Bo;Guan, Ke;Zhong, Zhangdui;Hui, Bing;Kim, Junhyeong;Chung, Heesang;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • More people prefer using rail traffic for travel or for commuting owing to its convenience and flexibility. The railway scenario has become an important communication scenario in the fifth generation era. The communication system should be designed to support high-data-rate demands with seamless connectivity at a high mobility. In this paper, the channel characteristics are studied and modeled for the railway tunnel scenario with straight and curved route shapes. On the basis of measurements using the "Mobile Hotspot Network" system, a three-dimensional ray tracer (RT) is calibrated and validated for the target scenarios. More channel characteristics are explored via RT simulations at 25.25 GHz with a 500-MHz bandwidth. The key channel parameters are extracted, provided, and incorporated into a 3rd-Generation-Partnership-Project-like stochastic channel generator. The necessary channel information can be practically realized, which can support the link-level and system-level design of the communication system in similar scenarios.

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.

A Study on the Methodology for Analyzing the Effectiveness of Traffic Safety Facilities Using Drone Images (드론 영상기반 교통안전시설 효과분석 방법론 연구)

  • Yong Woo Park;Yang Jung Kim;Shin Hyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.74-91
    • /
    • 2023
  • Several that analyzed the effectiveness of traffic safety facilities a method of comparing changes in the number of accidents, accident severity, speed through traffic accident data before and after installation or speed data collected from vehicle detection systems (VDS). , when traffic accident data is used, it takes a long time to collect because must be collected for at least one year before and after installation. , the road environment may change during this period, such as the addition of other traffic safety facilities in addition to the facilities to be analyzed. , the location of the VDSs for speed data is often different from the location where analysis is required, and there is a problem in that the investigators are exposed to the risk of traffic accident during on-site investigation. Therefore, this study a case study by establishing a methodology to determine effectiveness video images with a drone, extracting data using a program, and comparing vehicle driving speeds before and after speed reduction facilities. Vehicle speed surveys using drones are much safer than observational surveys conducted on highways and have the advantage of tracking speed changes along the vehicle, it is expected that they will be used for various traffic surveys in the future.

A Study on Operation Technique and Effective Analysis of Expressway Variable Speed Limits Control (도시고속도로 가변속도제어 운영방안과 효과분석)

  • Im, Gwan-Su;Nam, Du-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.7-14
    • /
    • 2011
  • This paper discusses operational technique and effectiveness of Variable Speed Limits system that is implemented to control the traffic-flow on the Naebu Expressway. As the first step of the analysis, traffic data collected from vehicle detectors are corrected and smoothed. Applying a pattern analysis technique to the traffic data, the weekday traffic is classified into four different groups, and median of each group is calculated. Using three state variables, i.e., diverted traffic volume, average density and average speed, the conditions of roadway segments are determined. Computational outputs resulted from the application of the proposed model to the scenarios show that implementation of Variable Speed Limits system improved both safety and efficiency of the expressway. For the operational strategy, this paper also presents the change rate of the speed limit, and the effective duration of the speed limit according to the entering traffic volume.

An Analysis of Effects of Travel Speed Using the Safety Facilities in the School Zones (어린이 보호구역내 교통안전시설이 구간통행속도에 미치는 효과 분석)

  • Lee, Ho-Won;Joo, Doo-Hwan;Hyun, Cheol-Seung;Kim, Dong-Hyo;Park, Boo-Hee;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.124-132
    • /
    • 2012
  • There is high probability of children's traffic accidents. Because their physical, mental attribute are weak. Major part of the accidents happen during walking. Above all, jaywalking is the biggest traffic accident reason. Many traffic accidents take place on the road to school or near the home area. So Ministry of Public Administration and Security legislated children safeguard zone since 1995. But a study are inadequate the safety facilities on the effectiveness verification in the school zone. Therefore, this study aims to analyze the effectiveness of safety facilities. The vehicle speed is a direct correlation traffic accident. So in this study, the MOE(Measure of Effectiveness) is average travel speed in the school zone. The results shows that hump, rised pedestrian crossing has an effect.

Safety Improvement of Centrally Installed "Hi-pass" Lane of Express Highway (고속도로 중앙하이패스차로 안전성 개선에 관한 연구 - 서울외곽순환고속도로 본선영업소를 중심으로 -)

  • Yoo, Bong-Seok;Lee, Soo-Beom;Park, Wan-Yong;Do, Hyun-Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.1-10
    • /
    • 2010
  • Safety improvement has been a continuous challenge, especially at toll gate of express highway where traffic conflict often occurs due to frequent lane change by drivers of "Hi-pass" lane and regular "TCS" lane. As a part of research on safety at toll gate, this study videotaped traffic conflict data between vehicles using centrally located "Hi-pass" lane and regular "TCS" lane and analyzed accident risk. According to the correlation analysis of vehicle speed, relative vehicle speed, and sudden vehicle deceleration rate due to traffic conflict, when the relative vehicle speed between centrally located "Hi-pass" lane and regular "TCS" lane increases, sudden vehicle deceleration rate also increases. One of the findings is that centrally located "Hi-pass" lane at toll gate shows different location for traffic conflict, and frequency of traffic conflict and the relative vehicle speed was also different based on vehicle lane use. TA (Time to Accident) analysis shows that accident rate is high at toll gate where Hipass lane is installed in center lane, when the occurrence of sudden vehicle deceleration and deceleration time of vehicles rise for vehicles on "Hi-pass" lane. Furthermore, if the expressway entrance/exit point is closely located to toll gate, TA showed a low value. Thus, it is necessary to reduce the relative vehicle speed in order to improve safety. The Study presents reduction of the relevant vehicular speed and prevention of accidents at the centrally installed "Hi-pass" lane as an important strategy for safety improvement at toll gate.

A Study on Effectiveness Analysis and Development of an Accident Prediction Model of Point-to-Point Speed Enforcement System (구간단속장비 설치 효과 분석 및 사고예측모형 개발)

  • Kim, Da Ye;Lee, Ho Won;Hong, Kyung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.144-152
    • /
    • 2019
  • According to the National Police Agency, point-to-point speed enforcement system is being installed and operated in 97 sections across the country. It is more effective than other enforcement systems in terms of stabilizing the traffic flow and inhibiting the kangaroo effect. But it is only 5.1% of the total enforcement systems. The National Police Agency is also aware that its operation ratio is very low and it is necessary to expand point-to-point speed enforcement system. Hence, this study aims to provide the expansion basis of the point-to-point speed enforcement operation through analysis of the quantitative effects and development the accident prediction model. Firstly, this study analyzed the effectiveness of point-to-point speed enforcement system. Naive before-after study and comparison group method(C-G Method) were used as methodologies of analyzing the effectiveness. The result of using the naive before-after study was significant. Total accidents, EPDOs and casualty crashes decreased by 42.15%, 70.64% and 45.30% respectively. And average speed and the ratio of exceeding speed limit decreased by 6.92% and 20.50%p respectively. Moreover, using the C-G method total accidents, EPDOs and casualty crashes decreased by 31.35%, 66.62% and 10.04% respectively. And average speed and the ratio of exceeding speed limit decreased by 3.49% and 56.65%p respectively. Secondly, this study developed a prediction model for the probability of casualty crash. It was dependant on factors of traffic volume, ratio of exceeding speed limit, ratio of heavy vehicle, ratio of curve section, and presence of point-to-point speed enforcement. Finally, this study selected the most danger sections to the major highway and evaluated proper installation sections to the recent installation section by applying the accident prediction model. The results of this study are expected to be useful in establishing the installation standards for the point-to-point speed enforcement system.

Analysis of Speeding Characteristics Using Data from Red Light and Speed Enforcement Cameras (다기능단속카메라 수집 자료를 활용한 과속운전 특성 분석)

  • PARK, Jeong Soon;KIM, Joong Hyo;HYUN, Chul Seng;JOO, Doo Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.29-42
    • /
    • 2016
  • Speeding is an important factor in traffic safety. Speed not only affects crash severity, but is also related to the possibility of crash occurrence. This study presents results from an analysis of 27,968 speed violation cases collected from 36 red light and speed enforcement cameras at signalized intersections in the city of Cheongju. Data included details of their violation history such as speeding tickets within a recent 3-year span and their demographic characteristics. The goal of this analysis is to understand the correlation between speed violations and various factors in terms of humans, vehicles and road environments. This study used descriptive statistics and Binary Logistics Regression(BLR) analysis with SPSS 20.0 software. The major results of this study are as follows. First, speed violations occurred at rural and suburban area. Second, about 25.6% of the violators committed to more than 20km/h over a speed limit. Third, the difference between speed violators and normal drivers clearly appeared in location of intersection(urban/rural/suburban area), gender and age. Finally, a statistically significant model(Hosmer and Lemeshow test: 11.586, p-value: 0.171) was developed through the BLR.

A Study on Verification of the effectiveness of Mutually Recognizable Traffic Safety Facilities (상호인식 교통안전시설물 현장적용에 따른 효과검증 연구)

  • Kim, Ki-Nam;Jeong, Yong-Ho;Lee, Min-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.468-474
    • /
    • 2019
  • Korea had the highest accident rate among OECD countries in 2018, with 8.4 per 100,000 population, ranking 4th among 35 countries. In addition, the accident rate of traffic with children and the elderly was also high. This study reviewed the relevant literature and analyzed the traffic-accident analysis system. Customized traffic safety facilities were developed. In addition, by measuring the visibility of the traffic safety facilities by installing a test bed, this study measured the forward driving frequency and vehicle driving speed while driving. As a result of applying the "pedestrian pedestrian model" collision test model, the possibility of serious injury after installing the facility was reduced greatly to 4.6%. In this study, the visibility of traffic safety facilities and the effect of reducing the traffic speed were verified through test beds. Recognizing traffic safety facilities will reduce traffic accidents.

Safety Assessment Scenarios for Cyclist AEB (자전거 대상 자동비상제동장치의 성능평가 시나리오 개발)

  • Kim, Taewoo;Yi, Kyongsu;Lee, EunDok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.13-19
    • /
    • 2017
  • This paper presents safety assessment scenarios for cyclist autonomous emergency braking(AEB) system. To assess the safety performance of AEB in real traffic situation with limited number of scenarios, scenario should reflect the characteristics of real traffic collision cases. For this, statistic data of real traffic car-to-cyclist collision in Korea are analyzed. Many types of accidents are listed and categorized based on the movement of vehicle and cycle just before the collision. Then, the characteristics, main issues and limitations of each scenarios are discussed. Not only the test scenario itself but also the cost and time for the test are very important issues for the test scenarios to actually repeat the test for various systems. Also, the performance of AEB can be effected by the algorithm of AEB and the technical limitation of the sensors and hardwares. Therefore, required number of tests, possibility of dummy destruction and other technical issues are discussed for each scenarios. Based on these information, typical scenarios are selected. Also, using this information, vehicle speed range, cyclist speed and collision point are established. Proposed scenarios are verified and modified based on the vehicle test results. vehicle test was evaluated 5 times for each scenarios. Based on this results, final test scenarios are modified and proposed.