• Title/Summary/Keyword: Traffic fatalities

Search Result 60, Processing Time 0.024 seconds

Analytical Model in Pedestrian Accident by Van Type Vehicle (Van 형 차량의 보행자 충돌 사고 해석 모델)

  • Ahn, Seung-Mo;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.115-120
    • /
    • 2008
  • The fatalities of pedestrian accounted for about 40.0% of all fatalities in Korea (2005 year). In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables, such as vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, and road condition. The trajectory of pedestrian after collision can be influenced by vehicular frontal shape classified into sedan type, box type, SUV type and van type. Many studies have been done about pedestrian accident with passenger car model and bus model for simple factors. But the study of pedestrian accident by van type vehicle was much insufficient, and even that the influence of multiple factors such as the offset of impact point was neglected. In this paper, a series of pedestrian kinetic simulation were conducted to inspect relationship between throw distance and multiple factors with using PC-CRASH s/w, a kinetic analysis program for a traffic accident for van type. By based on the simulation results, multi-variate regression was conducted, and regression equation was presented.

  • PDF

Traffic Control of Ad-hoc Network for Emergency Rescue Evacuation Support (긴급피난지원을 위한 애드혹 통신망에서 트래픽 제어)

  • Choi, Young-Bok
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.375-383
    • /
    • 2018
  • Recently, natural disasters including earthquakes, tsunamis, floods, and snowstorms, in addition to disasters of human origin such as arson, and acts of terror, have caused numerous injuries and fatalities around the world. We propose an area split clustering control method in multi-hop ah-hoc communication to reduce the amount of data traffic by allowing only parent terminals to exchange and share data for the emergency rescue and evacuation support system.

Identifying Environmental Factors near Construction Sites Affecting Pedestrian Safety

  • Taegwan YOON;Seulbi LEE
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.839-845
    • /
    • 2024
  • Construction projects in urban areas often disrupt pedestrian paths and expose pedestrians to risks by forcing them to detour onto roadways. Despite rising pedestrian fatalities and injuries near construction sites, most research predominantly focuses on the safety of on-site workers, with limited studies addressing pedestrian safety. This study aims to fill this gap by identifying environmental factors that cause discomfort to pedestrians, potentially leading to hazardous impacts. A total of 252 photos of streetscape areas near construction sites, including seven environmental factors (i.e., traffic cones, fences, barrier walls, materials, heavy equipment, roads, and sidewalks), were collected and evaluated by 41 participants using a 5-point Likert scale. The survey findings indicate that barrier walls enhance pedestrians' perception of safety. Conversely, it is observed that traffic cones, materials, and heavy equipment have adverse effects on pedestrian safety. These results underscore the need for enhanced safety measures targeting these high-risk factors to create pedestrian-friendly construction sites. This study contributes to developing more proactive pedestrian safety management strategies and ultimately reduces pedestrian injuries.

Traffic Accident Prediction Model by Freeway Geometric Types (고속도로 선형조건별 교통사고 위험도 평가모형 개발 (호남고속도로를 중심으로))

  • 강정규;이성관
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.163-175
    • /
    • 2002
  • Fatalities from traffic accidents constitute one of the major health issues as well as safety ones in Korea. It has been reported that traffic accident is affected by the combined effects of road. vehicle. and human factors. Over the past few decades, a number of studies have been conducted to find the impact of road geometric factors on traffic safety. The purpose of this study is to investigate the effect of road geometric factors on traffic safety on Korean expressways. Detailed geometric design data were available from Korea Highway Corporation. Five-year traffic accident data on Honam expressway were collected and analyzed. It was found that following geometric factors influence traffic safety on expressways : radius of curve, curve length, and length of straight section. Furthermore, the existence of I.C. turned out to have a significant impact on traffic safety level. Based on the data analysis several multiple regression forms that relate traffic accident frequencies and geometric factors on expressways are developed.

The Effects of Driving Behavior Determinants on Dangerous Driving and Traffic Accidents in the Reckless Drivers Group: A Path Analysis Study (사고 및 음주운전자들의 운전행동결정요인 특성이 위험행동 및 교통사고에 미치는 영향: 경로분석 연구)

  • O, Ju-Seok;Lee, Sun-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.95-105
    • /
    • 2007
  • Speeding and drunken driving make drivers fail to detect hazards and cope with various driving situations. These behaviors also raise the possibility of being involved in traffic accidents and tend to increase the number of fatalities. The authors compared the driving behavior determinants of a rockless drivers group, consisting of individuals who have committed traffic accidents or offended regulations through drunken driving, with a normal drivers group. In the results, the reckless drivers group showed high scores of 'speeding' and 'drunken driving', and they also stated that they had more experiences of speeding, drunken driving and traffic accidents. In the path analysis study, it was found that the impacts of the rockless drivers group's 'risk sensitivity' and 'situational adaptability' on traffic accidents were stronger than those of normal drivers. This means 'risk sensitivity' and 'situational adaptability' can explain the origins of traffic accidents better in the reckless drivers group than accidents of the normal drivers group.

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Optimum Design of SUV Suspension Parameters Considering Rollover Stability (전복 안정성을 고려한 SUV 현가장치 파라미터의 최적설계)

  • Lee, Sang-Beom;Jang, Young-Jin;Yim, Hong-Jae;Nah, Do-Baek
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.410-416
    • /
    • 2009
  • In recent years, the rollover accident of large class of vehicles has become important safety issue. Even though the rollover form a small percentage of all traffic accidents, they have a fatal effect upon the driver and passenger. Among the traffic accidents occurred in driving, the rollover is the major cause of traffic fatalities. Therefore, it is required to develop the analytical and experimental techniques for predicting rollover propensity of vehicles and also to improve the vehicle suspension design in the viewpoint of rollover resistance. In this study, the parameter sensitivities for the roll angle of SUV suspension are analyzed, and then the determined design parameters are optimized by using the regression model function of the response surface methods. The analysis results show that the roll angle of the optimized vehicle is decreased as compared with the initial vehicle and also the rollover possibility is decreased when the roll rate of the front suspension is larger than the roll rate of the rear suspension.

  • PDF

Developing a Solution to Improve Road Safety Using Multiple Deep Learning Techniques

  • Humberto, Villalta;Min gi, Lee;Yoon Hee, Jo;Kwang Sik, Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.85-96
    • /
    • 2023
  • The number of traffic accidents caused by wet or icy road surface conditions is on the rise every year. Car crashes in such bad road conditions can increase fatalities and serious injuries. Historical data (from the year 2016 to the year 2020) on weather-related traffic accidents show that the fatality rates are fairly high in Korea. This requires accurate prediction and identification of hazardous road conditions. In this study, a forecasting model is developed to predict the chances of traffic accidents that can occur on roads affected by weather and road surface conditions. Multiple deep learning algorithms taking into account AlexNet and 2D-CNN are employed. Data on orthophoto images, automatic weather systems, automated synoptic observing systems, and road surfaces are used for training and testing purposes. The orthophotos images are pre-processed before using them as input data for the modeling process. The procedure involves image segmentation techniques as well as the Z-Curve index. Results indicate that there is an acceptable performance of prediction such as 65% for dry, 46% for moist, and 33% for wet road conditions. The overall accuracy of the model is 53%. The findings of the study may contribute to developing comprehensive measures for enhancing road safety.

A Study on Pedestrian Crashes Contributing Factors During Jaywalking - Focused on the case of Seoul - (무단횡단 교통사고 요인에 관한 연구 - 서울시 사례를 중심으로 -)

  • Choi, Jaisung;Kim, Sangyoup;Kim, Sungkyu;Yeon, Junhyoung;Kim, Chilhyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.38-49
    • /
    • 2015
  • Seoul has 424 traffic fatalities in 2010 and 227 of them related to pedestrian crashes. In addition, it revealed that 40% of pedestrian fatalities occurred during jaywalking. Through the effective methods preventing jaywalking can save lots of people, and it can reduce social costs pertinent to pedestrian crashes. Therefore, this study is to suggest the methods preventing jaywalking through conducting literature reviews, human factors with pedestrian and vehicle characteristics, as well as geometric features of accident site or spot. Firstly, in order for examining the contributing factors of accident, this research conducts statistical analysis on pedestrian accidents specifically in jaywalking. Secondly, the analysis on human factors about pedestrian and drivers revealed that drivers with high speed play pivotal roles in pedestrian fatalities. Thirdly, Road and environment factors showed both expected and contradictory results through analyzing total numbers of lane or dry/icy pavement conditions. Consequently, this study can be used to prevent and alleviate pedestrian accidents as well as expected to be applied to future researches about pedestrian safety facilities.

Analysis of Truck involved Accidents on Freeways (고속도로에서의 트럭 차량 관련 사고 요인 분석)

  • Yang, Choon-Heon;Son, Young-Tae
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.35-45
    • /
    • 2008
  • Trucking is the most frequently used mode for freight movement due to relatively lower shipping costs and its operational flexibility. However, truck traffic can contribute to serious safety problems where they occupy high percentage of the total traffic. Heavy truck crashes arc more likely to result in serious injuries and fatalities than are crashes involving light vehicles. Therefore, safety issues for truck traffic are very significant both for public agencies and for general travelers. The objective of our study is to find truck-involved accident patterns according to traffic conditions and main factors as well as to find the most critical factor through conventional statistical techniques. A vailable data were obtained from TASAS (Traffic Accident Surveillance and Analysis System). Once critical factors are identified, effective and efficient truck management strategies can be discussed.

  • PDF