• Title/Summary/Keyword: Traffic estimation

Search Result 793, Processing Time 0.031 seconds

A study on the estimation of impact velocity of crashed vehicles in tunnel using computer simulation(PC-CRASH) (컴퓨터 시뮬레이션(PC-CRASH)을 이용한 터널 내 피추돌 차량의 충돌 속도 추정에 관한 연구)

  • Han, Chang-Pyoung;Choi, Hong-Ju
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.40-45
    • /
    • 2020
  • In a vehicle-to-vehicle accident, the impact posture, braking status, final stopping position, collision point and collision speed are important factors for accident reconstruction. In particular, the speed of collision is the most important issue. In this study, the collision speed and the final stopping position in the tunnel were estimated using PC-CRASH, a vehicle crash analysis program used for traffic accident analysis, and the final stopping position of the simulation and the final stopping position of the traffic accident report were compared. When the Pride speed was 0km/h or 30km/h and the Sorento speed was 100m/h, the simulation results and reports matched the final stopping positions and posture of the two vehicles. As a result of the simulation, it can be estimated that Pride was collided in an almost stationary state.

A Forecast Method of Marine Traffic Volume through Time Series Analysis (시계열 분석을 통한 해상교통량 예측 방안)

  • Yoo, Sang-Rok;Park, Young-Soo;Jeong, Jung-Sik;Kim, Chul-Seong;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.612-620
    • /
    • 2013
  • In this study, time series analysis was tried, which is widely applied to demand forecast of diverse fields such as finance, economy, trade, and so on, different from previous regression analysis. Future marine traffic volume was forecasted on the basis of data of the number of ships entering Incheon port from January 1996 to June 2013, through courses of stationarity verification, model identification, coefficient estimation, and diagnostic checking. As a result of prediction January 2014 to December 2015, February has less traffic volume than other months, but January has more traffic volume than other months. Also, it was found out that Incheon port was more proper to ARIMA model than exponential smoothing method and there was a difference of monthly traffic volume according to seasons. The study has a meaning in that future traffic volume was forecasted per month with time series model. Also, it is judged that forecast of future marine traffic volume through time series model will be the more suitable model than prediction of marine traffic volume with previous regression analysis.

A Study on Estimation of the Greenhouse Gas Emission from the Road Transportation Infrastructure Using the Geostatistical Analysis -A Case of the Daegu- (공간통계기법을 이용한 도로교통기반의 온실가스 관한 연구 -대구광역시를 대상으로-)

  • Lee, Sang Woo;Lee, Seung Wook;Lee, Seung Yeob;Hong, Won Hwa
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • This study was intended to reliably predict the traffic green house gas emission in Daegu with the use of spatial statistical technique and calculate the traffic green house gas emission of each administrative district on the basis of the accurately predicted emission. First, with the use of the traffic actually surveyed at a traffic observation point, and traffic green house gas emission was calculated. Secondly, on the basis of the calculation, and with the use of Universal Kriging technique, this researcher set a suitable variogram modeling to accurately and reliably predict the green house gas emission at non-observation point suitable through spatial correlation, and then performed cross validation to prove the validity of the proper variogram modeling and Kriging technique. Thirdly, with the use of the validated kriging technique, traffic green gas emission was visualized, and its distribution features were analyzed to predict and calculate the traffic green house gas emission of each administrative district. As a result, regarding the traffic green house gas emission of each administration, it was found that Bukgu had the highest green house gas emission of $291,878,020kgCO_2eq/yr$.

A Study on the Public Evacuation Time Estimates for Radiological Emergency Plan and Preparedness of Wolsong Nuclear Power Plant Site (방사선 비상계획을 위한 월성원전 주변 주민 소개시간 예측 연구)

  • Lee, Gab-Bock;Bang, Sun-Young;Chung, Yang-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.79-88
    • /
    • 2007
  • When an accident occurs at nuclear power plant and radionuclide material is released to the area around the plant, public evacuation is considered as a measure to protect the safety of the residents nearby. This study draws factors required to estimate evacuation time and make estimation of the time to evacuate all residents from the EPZ of Wolsong site in consideration of traffic condition in the neighborhood and on the basis of field data around the site for each factor. The traffic capacity and the traffic volume by season were investigated for the traffic analysis and simulation within EPZ of Wolsong site. As a result, the background traffic volume by season were established. To estimate TGT(Trip Generation Time), the questionnaire surveys were carried out for resident and transient. The TSIS code was applied to traffic analysis in the events of daytime/night and normal/adverse weather under normal day/summer peak traffic condition. The results showed that the evacuation time required for total vehicles to move out from EPZ took generally from 118 to 150 minutes. The evacuation time took longer maximum 17 minutes at night than daytime during summer peak traffic.

Methodology for Estimating Highway Traffic Performance Based on Origin/Destination Traffic Volume (기종점통행량(O/D) 기반의 고속도로 통행실적 산정 방법론 연구)

  • Howon Lee;Jungyeol Hong;Yoonhyuk Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Understanding accurate traffic performance is crucial for ensuring efficient highway operation and providing a sustainable mobility environment. On the other hand, an immediate and precise estimation of highway traffic performance faces challenges because of infrastructure and technological constraints, data processing complexities, and limitations in using integrated big data. This paper introduces a framework for estimating traffic performance by analyzing real-time data sourced from toll collection systems and dedicated short-range communications used on highways. In particular, this study addresses the data errors arising from segmented information in data, influencing the individual travel trajectories of vehicles and establishing a more reliable Origin-Destination (OD) framework. The study revealed the necessity of trip linkage for accurate estimations when consecutive segments of individual vehicle travel within the OD occur within a 20-minute window. By linking these trip ODs, the daily average highway traffic performance for South Korea was estimated to be248,624 thousand vehicle kilometers per day. This value shows an increase of approximately 458 thousand vehicle kilometers per day compared to the 248,166 thousand vehicle kilometers per day reported in the highway operations manual. This outcome highlights the potential for supplementing previously omitted traffic performance data through the methodology proposed in this study.

Assessing Estimation Methods of the Expected Crashes using Panel Traffic Crash Data (패널교통사고자료 기반 기대교통사고건수 추정기법 평가)

  • Sin, Gang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • To evaluate highway safety countermeasures or identify high risk sites, the expected crashes for a site (or segment) have been estimated using the panel crash data. Past studies show that two different methods can be employed to estimate the expected crashes: observed crash based method and empirical Bayes (EB) method. This study conducts a simulation study to analyze how the estimation errors of the two estimates are affected by the different structures of the panel crash data and the presence of the change in safety over time. The results disclose that the estimation errors of the observed crash based estimates (i.e. the mean observed crash and comparative parallel estimate) are always greater than those of the EB estimates regardless of the structure of the panel crash data and the presence of the change in safety over time. Thus, it is highly recommended that the EB method be used in the study of traffic safety to obtain more reliable estimates for the expected crashes. In addition, this study corroborates that the estimation errors of the two estimates decrease as the analysis periods increase if safety does not change over time. Hence, it is also recommended that the 1-year analysis period used for identifying high risk sites in Korea be extended to produce more efficient estimates of the time-constant expected crashes.

Research on LOS Estimation Standard in the Mixed Traffic Street (보차혼용도로에서의 LOS 평가기준 마련에 관한 연구)

  • Kim, Suk-Hui;Kim, Gwan-Jung;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.63-71
    • /
    • 2006
  • There were many theories to suggest the indicators that evaluate stability and reflect the plan in mixed traffic street in all traffic modes This Paper analyzed residential street of Suwon City adopting time-space occupancy index among these indicates. Three survey street. congregated into apartment house. were selected to analyze this and pictured by video camera over one hour. and the length of these street were 76m, 55m, and 34m each, and major street by each region, comparably high in Pedestrians and pass vehicles, were selected. Basic datum to calculate time-space occupancy index and time-space occupancy index per person was gathered through video analysis. i.e Parameters for pedestrians, cars, bicycles, average speed of bicycles, and parking car. There are some limitation to analyze LOS of mixed traffic street in all traffic modes, not pedestrian mall. Therefore this paper presented evaluation standard of LOS. In conclusion. the aim of this paper is to suggest modeling based on guidelines for evaluating LOS of mixed traffic street in all traffic modes. It is estimated that this will be influencing indicates for improving pedestrian environment, and Planning mixed traffic street in future.

Methodology for Determining RSE Spacing for Vehicle-Infrastructure Integration(VII) Based Traffic Information System (Focused on Uninterrupted Traffic Flow) (차량-인프라 연계(VII) 기반 교통정보시스템의 RSE 설치간격 결정 방법론 (연속류를 중심으로))

  • Park, Jun-Hyeong;O, Cheol;Im, Hui-Seop;Gang, Gyeong-Pyo
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.29-44
    • /
    • 2009
  • A variety of research efforts, using advanced wireless communication technologies, have been made to develop more reliable traffic information system. This study presents a novel decentralized traffic information system based on vehicle infrastructure integration (VII). A major objective of this study was also to devise a methodology for determining appropriate spacing of roadside equipment (RSE) to fully exploit the benefits of the proposed VII-based traffic information system. Evaluation of travel time estimation accuracy was conducted with various RSE spacings and the market penetration rates of equipped vehicle. A microscopic traffic simulator, VISSIM, was used to obtain individual vehicle travel information for the evaluation. In addition, the ANOVA tests were conducted to draw statistically significant results of simulation analyses in determining the RSE spacing. It is expected that the proposed methodology will be a valuable precursor to implementing capability-enhanced next generation traffic information systems under the forthcoming ubiquitous transportation environment.

Estimation of Design Service Traffic Volume for 2+1 Roads Based on Korean Two-Lane Highway Conditions (국내 2+1차로 도로의 적정 교통량 및 계획기준 개발)

  • Lee, Dong Min;Chae, Chan Dle;Cho, Hanseon;Lee, Suk Ki
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.3-10
    • /
    • 2013
  • Two-lane roads that occupy more than a half of rural highways in Korea have operational problems such as traffic congestion problems due to relatively high traffic volume and safety problems due to overtaking risks in two-lane highways. To solve these problems, a 2+1 road pattern that enables to improve traffic safety and operational efficiency of two-lane highways has been applied in Europe. In this study, in-depth applicability of 2+1 roads to Korean rural highways was investigated based on review results of the successful experience of European 2+1 roads. Then, given the Korean two-lane highway conditions, the service traffic volumes for Korean 2+1 roads was estimated. The analysis results showed that 17,000 veh./day might be the maximum traffic volumes for Korean 2+1 roads.

Study on Estimation of Unmanned Enforcement Equipment Installation Criteria and Proper Installation Number (무인교통단속장비 설치 판단 기준 및 설치대수 산정 연구)

  • So, Hyung-Jun;Kim, Yong-Man;Kim, Nam-Seon;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.49-60
    • /
    • 2020
  • The number of traffic control equipment installed to prevent traffic accidents increases every year due to continuous installation by the National Police Agency and local governments. However, it is installed based on qualitative judgment rather than engineering analysis results. The purpose of this study was to present additional installations in the future by presenting the installation criteria considering the severity of accidents for each road type and calculating the appropriate number of installations. ARI indicators that can indicate the severity of traffic accidents were developed, and road types were classified through analysis of variance and cluster analysis, and accident information by road type was analyzed to derive ARI of clusters with high traffic accident severity. The ARI values required to determine the installation of equipment for each road type were presented, and 5,244 additional installation points were analyzed.