• Title/Summary/Keyword: Traffic control agent

Search Result 51, Processing Time 0.025 seconds

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

Agent-Oriented Fuzzy Traffic Control Simulation

  • Kim, Jong-Wan;Lee, Seunga;Kim, Youngsoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.584-590
    • /
    • 2000
  • Urban traffic situations are extremely complex and highly interactive. The multi-agent systems approach can provide a new desirable solution. Currently, a traffic simulator is needed to understand and explore the difficulties in an agent-oriented traffic control. This paper presents an agent-oriented fuzzy logic controller for multiple crossroads simulation. A fuzzy logic control simulation with variables of arrival, queue, and traffic volume could alleviate traffic congestion. We developed an agent-oriented simulator suitable for traffic junctions with η$\times$η intersections in Visual C++. The proposed method adaptively controls the cycle of traffic signals even though the traffic volume varies. The effectiveness of this method was shown through simulation of multiple intersections.

  • PDF

A traffic control agent to manage flow usage in Differentiated Service Network (차별화서비스 네트워크에서 흐름 관리를 위한 트래픽 제어 에이전트)

  • 이명섭;박창현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.69-72
    • /
    • 2003
  • This paper presents a traffic control agent that can perform the dynamic resource allocation by controlling traffic flows on a DiffServ network. In addition, this paper presents a router that can support DiffServ on Linux to support selective QoS in IP network environment. To implement a method for selective traffic transmission based on priority on a DiffServ router, this paper changes the queuing discipline in Linux, and presents the traffic control agent so that it can efficiently control routers, efficiently allocates network resources according to service requests, and relocate resources in response to state changes of the network.

  • PDF

DEVELOPMENT OF MATDYMO(MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) II: DEVELOPMENT OF VEHICLE AND DRIVER AGENT

  • Cho, K.Y.;Kwon, S.J.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the companion paper, the composition and structure of the MATDYMO (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model) were proposed. MATDYMO consists of the road management system, the vehicle motion control system, the driver management system, and the integration control system. Among these systems, the road management system and the integration control system were discussed In the companion paper. In this paper, the vehicle motion control system and the driver management system are discussed. The driver management system constructs the driver agent capable of having different driving styles ranging from slow and careful driving to fast and aggressive driving through the yielding index and passing index. According to these indices, the agents pass or yield their lane for other vehicles; the driver management system constructs the vehicle agents capable of representing the physical vehicle itself. A vehicle agent shows its behavior according to its dynamic characteristics. The vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation is conducted for an interrupted flow model and its results are verified by comparison with the results from a commercial software, TRANSYT-7F. The interrupted flow model simulation is implemented for three cases. The first case analyzes the agents' behaviors in the interrupted flow model and it confirms that the agent's behavior could characterize the diversity of human behavior and vehicle well through every rule and communication frameworks. The second case analyzes the traffic signals changed at different intervals and as the acceleration rate changed. The third case analyzes the effects of the traffic signals and traffic volume. The results of these analyses showed that the change of the traffic state was closely related with the vehicle acceleration rate, traffic volume, and the traffic signal interval between intersections. These simulations confirmed that MATDYMO can represent the real traffic condition of the interrupted flow model. At the current stage of development, MATDYMO shows great promise and has significant implications on future traffic state forecasting research.

Q-learning for intersection traffic flow Control based on agents

  • Zhou, Xuan;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.94-96
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

The Integrated Control Model for the Freeway Corridors based on Multi-Agent Approach (멀티 에이전트를 이용한 도로정체에 따른 교통흐름 예측 및 통합제어)

  • Cho, Ki-Yong;Bae, Chul-Ho;Lee, Jung-Hwan;Chu, Yul;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.84-92
    • /
    • 2006
  • Freeway Corridors consist of urban freeways and parallel arterials that drivers can use alternatively. Ramp metering in freeways and signal control in arterials are contemporary traffic control methods that have been developed and applied in order to improve traffic conditions of freeway corridors. However, most of the existing studies have focused on either optimal ramp metering in freeways, or progression signal strategies between arterial intersections. There have been no traffic control systems in Korea that integrates the freeway ramp metering and arterial signal control. The effective control strategies for freeway operations may cause negative effects on arterial traffic. On the other hand, traffic congestion and bottleneck phenomenon of arterials due to the increasing peak-hour travel demand and ineffective signal operation may generate an accessibility problem to freeway ramps. Thus, the main function of the freeway which is the through-traffic process has not been successful. The purpose of this study is to develop an integrated control model that connects freeway ramp metering systems and signal control systems in arterial intersections. And Optimization of integrated control model which consists of ramp metering and signal control is another purpose. Optimization results are verified by comparison with the results from MATDYMO.

The Integrated Control Model for the Freeway Corridors based on Multi-Agent Approach I : Simulation System & Modeling for Optimization (멀티 에이전트를 이용한 도로정체에 따른 교통흐름 예측 및 통합제어 I : 시뮬레이션 시스템 개발 및 최적화를 위한 모델링)

  • Cho, Ki-Yong;Bae, Chul-Ho;Kim, Hyun-Jun;Chu, Yul;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • Freeway corridors consist of urban freeways and parallel arterials that drivers can use alternatively. Ramp metering in freeways and signal control in arterials are contemporary traffic control methods that have been developed and applied in order to improve traffic conditions of freeway corridors. However, most of the existing studies have focused on either optimal ramp metering in freeways, or progression signal strategies between arterial intersections. There have been no traffic control systems in Korea that integrates the freeway ramp metering and arterial signal control. The effective control strategies for freeway operations may cause negative effects on arterial traffic. On the other hand, traffic congestion and bottleneck phenomenon of arterials due to the increasing peak-hour travel demand and ineffective signal operation may generate an accessibility problem to freeway ramps. Thus, the main function of the freeway which is the through-traffic process has not been successful. The purpose of this study is to develop an integrated control model that connects freeway ramp metering systems and signal control systems in arterial intersections. And Optimization of integrated control model which consists of ramp metering and signal control is another purpose. The design of experiment, neural network, and simulated annealing are used for optimization.

Multi Agent Flow Control in Roundabout Using Self-Organization Technique

  • Kim, Gyu-Sung;Kim, Dong-Won;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1735-1740
    • /
    • 2005
  • In this paper, ways of improving the performances of roundabouts under the assumption that the Advanced Vehicle System is proposed. The situation on a road contains uncertainty and complexity caused by different vehicles having different directions and time-varying traffic flow. This sort of system with high uncertainty is called Multi Agent System (MAS). The MAS is a collective system, including numbers of agents and performs high diversity of the configuration as well as it has nonlinear property and complexity. Hence it is difficult to analyze and control the multi-agent system. A roundabout can be considered as an MAS with numbers of moving vehicles. So it must be difficult to use a centralized control technique to all vehicles in an intersection. Therefore, to improve the performances of roundabouts, multi-agents flow control algorithm for vehicles in Roundabouts using 'self-organization' technique is proposed.

  • PDF

A traffic control system to manage bandwidth usage in IP networks supporting Differentiated Service (차별화서비스를 제공하는 IP네트워크에서 대역폭관리를 위한 트래픽 제어시스템)

  • 이명섭;박창현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.325-338
    • /
    • 2004
  • As the recent rapid development of internet technology and the wide spread of multimedia communication, massive increase of network traffic causes some problems such as the lack of network paths and the bad quality of service. To resolve these problems, this paper presents a traffic control agent that can perform the dynamic resource allocation by controlling traffic flows on a DiffServ network. In addition, this paper presents a router that can support DiffServ on Linux to support selective QoS in IP network environment. To implement a method for selective traffic transmission based on priority on a DiffServ router, this paper changes the queuing discipline in Linux, and presents the traffic control agent so that it can efficiently control routers, efficiently allocates network resources according to service requests, and relocate resources in response to state changes of the network. Particularly for the efficient processing of Assured Forwarding(AF) Per Hop Behavior(PHB), this paper proposes an ACWF$^2$Q$^{+}$ packet scheduler on a DiffServ router to enhance the throughput of packet transmission and the fairness of traffic services.s.

A Study on the Traffic Agent System Using Unicast Method and P2P (유니캐스트 방식과 P2P를 응용한 트래픽 에이전트 시스템에 관한 연구)

  • Kim Hyun-Ki;Kim Song-Young;Cho Dae-Jea
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.707-741
    • /
    • 2005
  • In the multimedia streaming technology, the unicast method require additional cost by an increase traffic according to increase a number of users. The multicast method can solve this problem, but it don't have connection and control information of clients. Now, the most routers support only unicast. Also it has a problem with an exchange of service in other ISP. This paper proposes traffic agent system which is applied unicast and P2P(Peer to Peer) for distance video teaming to overcome this problem. The proposed system decrease the traffic of stream server by control agent, and cut down expenses of network. This system is tested under the distance video leaning using JMF and application software.

  • PDF