• Title/Summary/Keyword: Traffic congestion situation

Search Result 81, Processing Time 0.029 seconds

A Fuzzy Traffic Controller Considering Spillback on Crossroads

  • Park, Wan-Kyoo;Lee, Sung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In this paper, we propose a fuzzy traffic controller that is able to cope with traffic congestion appropriately. In order to consider such situation as loss of green time caused by spillback of upper crossroad, it imports a degree of traffic congestion of upper roads which vehicles on a crossroad are to proceed to. We constructed the equal-partitioned fuzzy traffic controller that uses the membership functions of the same size and shape, and modified the size and shape, and modified the size and shape of its membership functions by the membership function modification algorithm. In experiment, we compared and analyzed the fixed signal controller, the fuzzy traffic controller with the membership of the same size and shape, and the modified fuzzy traffic controller by using the delay time, the proportion of entered vehicles to occurred vehicles and the proportion of passed vehicles to entered vehicles. As a result of experiment, the modified fuzzy controller showed more enhanced performance than others.

  • PDF

A Study on the Air Traffic Situation Variables which Influence the Job Performance of Military Air Traffic Controllers (군관제사의 직무 수행과 항공교통상황 변인의 영향 연구)

  • Sin, Hyon-Sam;Jang, Jung-Ha;Ahn, Jae-Mo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The air traffic situation variables were emphasized in this research to review the awareness level of job performance of military air traffic controllers in application of air traffic situation variables such as detection of aircraft identification, type of aircraft, position ,speed, altitude, determination of separation between departing and arriving in-trail aircraft, physical airport conditions, adverse weather conditions, NAVAID outage and ATC facilities' operational status. In this respect, This study was conducted under the auspice of ATC facility operating agencies and devoting air force air traffic controller's participation by answering the questionnaires from nine radar approach control facilities and other air traffic control towers.

A Traffic congestion judgement Algorithm development for signal control using taxi gps data (택시 GPS데이터를 활용한 신호제어용 혼잡상황 판단 알고리즘 개발)

  • Lee, Choul Ki;Lee, Sang Deok;Lee, Yong Ju;Lee, Seung Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.52-59
    • /
    • 2016
  • COSMOS system which was developed in Seoul for real-time signal control was designed to judge traffic condition for practicing signal operation. However, it occurs efficiency problem that stop line detection and queue length detection could not judge overflow saturation of street. For that reason, following research process GPS data of Seoul city's corporationowned taxi to calculate travel speed that excluded existing system of stop line detection and queue length detection. Also, "Research of calculating queue length by GPS data" which was progressed with following research expressed queue length. It is based on establishing algorithm of judging congestion situation. The algorithm was applied to a few areas where appeared congestion situation consistently to confirm real time traffic condition with established network. [Entrance of the National Sport Institute ${\rightarrow}$ Gangnam station Intersection, Yuksam station intersection ${\rightarrow}$ National Sport Institute.

ABR Traffic Control Using Feedback Information and Algorithm

  • Lee, Kwang-Ok;Son, Young-Su;Kim, Hyeon-ju;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.236-242
    • /
    • 2003
  • ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates. In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic control. If backward node receive the longer delayed feedback information on the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals. The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series. The predicted congestion information is backward to the node. NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction. Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.

  • PDF

Real-Time Stochastic Optimum Control of Traffic Signals

  • Lee, Hee-Hyol
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.30-44
    • /
    • 2013
  • Traffic congestion has become a serious problem with the recent exponential increase in the number of vehicles. In urban areas, almost all traffic congestion occurs at intersections. One of the ways to solve this problem is road expansion, but it is difficult to realize in urban areas because of the high cost and long construction period. In such cases, traffic signal control is a reasonable method for reducing traffic jams. In an actual situation, the traffic flow changes randomly and its randomness makes the control of traffic signals difficult. A prediction of traffic jams is, therefore, necessary and effective for reducing traffic jams. In addition, an autonomous distributed (stand-alone) point control of each traffic light individually is better than the wide and/or line control of traffic lights from the perspective of real-time control. This paper describes a stochastic optimum control of crossroads and multi-way traffic signals. First, a stochastic model of traffic flows and traffic jams is constructed by using a Bayesian network. Secondly, the probabilistic distributions of the traffic flows are estimated by using a cellular automaton, and then the probabilistic distributions of traffic jams are predicted. Thirdly, optimum traffic signals of crossroads and multi-way intersection are searched by using a modified particle swarm optimization algorithm to realize real-time traffic control. Finally, simulations are carried out to confirm the effectiveness of the real-time stochastic optimum control of traffic signals.

A Study of Classification Analysis about Traffic Conditions Using Factor Analysis and Cluster Analysis (요인분석 및 군집분석을 활용한 교통상황 유형 분류분석)

  • Su-hwan Jeong;Kyeung-hee Han;Jaehyun (Jason) So;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • In this study, a classification analysis was performed based on the type of traffic situation. The purpose was to derive the major variable factors that could represent the traffic situation. The TTI(Travel Time Index) was used as a criterion for determining traffic conditions, and analysis was performed using data generally detected by the Vehicle Detecting System(VDS). First, the major factors influencing the traffic situation were selected through factor analysis, and traffic conditions were clustered through a cluster analysis of the major factors. After that, variance analysis for each cluster was performed based on the TTI, and similar clusters were merged to categorize the type of traffic situation. The analysis derived, the maximum queue length and occupancy as major factors that could represent the traffic situation. Through this study, it is expected that efficient management of traffic congestion would be possible by just concentrating on the main variable factors that affect the traffic situation.

Simulation of Traffic Signal Control with Adaptive Priority Order through Object Extraction in Images (영상에서 객체 추출을 통한 적응형 통행 우선순위 교통신호 제어 시뮬레이션)

  • Youn, Jae-Hong;Ji, Yoo-Kang
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1051-1058
    • /
    • 2008
  • The advancement of technology for image processing and communications makes it possible for current traffic signal controllers and vehicle detection technology to make both emergency vehicle preemption and transit priority strategies as a part of integrated system. Present]y traffic signal control in crosswalk is controlled by fixed signals. The signal control keeps regular signals traffic even with no traffic, when there is traffic, should wait until the signal is given. Waiting time causes the risk of traffic accidents and traffic congestion in accordance with signal violation. To help reduce the risk of accidents and congestion, this paper explains traffic signal control system for the adaptive priority order so that signal may be preferentially given in accordance with the situation of site through the object detect images.

  • PDF

Traffic Signal Control using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 교통 신호 제어)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.19-24
    • /
    • 2010
  • The number of automobiles are continuously increasing in Korea since 1990's and it causes frustrating commuting traffic and holyday traffic. Meanwhile, the obsolete traffic signal control system is still under static control based on the aggregated traffic statistics thus it is not sufficiently adaptive in real world traffic situation that changes in real time. Thus, in this paper, we propose an adaptive signal control system using fuzzy control technology that can react to real time traffic situations. The method computes the priority of signal phases based on the number of waiting automobiles and occupying time on intersection using fuzzy membership functions. The phase with highest priority obtains "proceed" signal. Also, the duration of this "proceed" signal is determined based on the ratio of number of waiting automobiles of given phase and total number of waiting automobiles on intersection. In experiment, we show that the proposed fuzzy control system is better than the static control system for all sorts of traffic congestion situations by simulation.

Queue Management Algorithm for Congestion Avoidance in Mixed-Traffic Network (혼합트래픽 네트워크에서 혼잡회피를 위한 큐 관리 알고리즘)

  • Kim, Chang Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.81-94
    • /
    • 2012
  • This paper suggests PARED algorithm, a modified RED algorithm, that actively reacts to dynamic changes in network to apply packet drop probability flexibly. The main idea of PARED algorithm is that it compares the target queue length to the average queue length which is the criterion of changes in packet drop probability and feeds the gap into packet drop probability. That is, when the difference between the average queue length and the target queue length is great, it reflects as much as the difference in packet drop probability, and reflects little when the difference is little. By doing so, packet drop probability could be actively controled and effectively dealt with in the network traffic situation. To evaluate the performance of the suggested algorithm, we conducted simulations by changing network traffic into a dynamic stat. At the experiments, the suggested algorithm was compared to the existing RED one and then to ARED one that provided the basic idea for this algorithm. The results proved that the suggested PARED algorithm is superior to the existing algorithms.

Performance Analysis of a Congestion cControl Mechanism Based on Active-WRED Under Multi-classes Traffic (멀티클래스 서비스 환경에서 Active-WRED 기반의 혼잡 제어 메커니즘 및 성능 분석)

  • Kim, Hyun-Jong;Kim, Jong-Chan;Choi, Seong-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.125-133
    • /
    • 2008
  • In this paper, we propose active queue management mechanism (Active-WRED) to guarantee quality of the high priority service class in multi-class traffic service environment. In congestion situation, this mechanism increases drop probability of low priority traffic and reduces the drop probability of the high priority traffic, therefore it can improve the quality of the high priority service. In order to analyze the performance of our mechanism we introduce the stochastic analysis of a discrete-time queueing systems for the performance evaluation of the Active Queue Management (AQM) based congestion control mechanism called Weighted Random Early Detection (WRED) using a two-state Markov-Modulated Bernoulli arrival process (MMBP-2) as the traffic source. A two-dimensional discrete-time Harkov chain is introduced to model the Active-WRED mechanism for two traffic classes (Guaranteed Service and Best Effort Service) where each dimension corresponds to a traffic class with its own parameters.