• Title/Summary/Keyword: Traffic big data

Search Result 241, Processing Time 0.025 seconds

Methodology for Estimating Highway Traffic Performance Based on Origin/Destination Traffic Volume (기종점통행량(O/D) 기반의 고속도로 통행실적 산정 방법론 연구)

  • Howon Lee;Jungyeol Hong;Yoonhyuk Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Understanding accurate traffic performance is crucial for ensuring efficient highway operation and providing a sustainable mobility environment. On the other hand, an immediate and precise estimation of highway traffic performance faces challenges because of infrastructure and technological constraints, data processing complexities, and limitations in using integrated big data. This paper introduces a framework for estimating traffic performance by analyzing real-time data sourced from toll collection systems and dedicated short-range communications used on highways. In particular, this study addresses the data errors arising from segmented information in data, influencing the individual travel trajectories of vehicles and establishing a more reliable Origin-Destination (OD) framework. The study revealed the necessity of trip linkage for accurate estimations when consecutive segments of individual vehicle travel within the OD occur within a 20-minute window. By linking these trip ODs, the daily average highway traffic performance for South Korea was estimated to be248,624 thousand vehicle kilometers per day. This value shows an increase of approximately 458 thousand vehicle kilometers per day compared to the 248,166 thousand vehicle kilometers per day reported in the highway operations manual. This outcome highlights the potential for supplementing previously omitted traffic performance data through the methodology proposed in this study.

Designing a Vehicles for Open-Pit Mining with Optimized Scheduling Based on 5G and IoT

  • Alaboudi, Abdulellah A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancement coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. To improve the convergence, distribution, and diversity of the classic, rapidly non-dominated genetic trial algorithm, to solve limited high-dimensional multi-objective problems, we propose a decomposition-based restricted genetic algorithm for dominance (DBCDP-NSGA-II).

An Algorithm for Identifying the Change of the Current Traffic Congestion Using Historical Traffic Congestion Patterns (과거 교통정체 패턴을 이용한 현재의 교통정체 변화 판별 알고리즘)

  • Lee, Kyungmin;Hong, Bonghee;Jeong, Doseong;Lee, Jiwan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • In this paper, we proposed an algorithm for the identification of relieving or worsening current traffic congestion using historic traffic congestion patterns. Historical congestion patterns were placed in an adjacency list. The patterns were constructed to represent spatial and temporal length for status of a congested road. Then, we found information about historical traffic congestions that were similar to today's traffic congestion and will use that information to show how to change traffic congestion in the future. The most similar pattern to current traffic status among the historical patterns corresponded to starting section of current traffic congestion. One of our experiment results had average error when we compared identified changes of the congestion for one of the sections in the congestion road by using our proposal and real traffic status. The average error was 15 minutes. Another result was for the long congestion road consisting of several sections. The average error for this result was within 10 minutes.

A Study on Vehicle Big Data-based Micro-scale Segment Speed Information Service for Future Traffic Environment Assistance (미래 교통환경 지원을 위한 차량 빅데이터 기반의 미시구간 속도정보 서비스 방안 연구)

  • Choi, Kanghyeok;Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • Vehicle average speed information which measured at a point or a short section has a problem in that it cannot accurately provide the speed changes on an actual highway. In this study, segment separation method based on vehicle big data for accurate micro-speed estimation is proposed. In this study, to find the point where the speed deviation occurs using location-based individual vehicle big data, time and space mean speed functions were used. Next, points being changed micro-scale speed are classified through gradual segment separation based on geohash. By the comparative evaluation for the results, this study presents that the link-based speed is could not represent accurate speed for micro-scale segments.

Optimize TOD Time-Division with Dynamic Time Warping Distance-based Non-Hierarchical Cluster Analysis (동적 타임 워핑 거리 기반 비 계층적 군집분석을 활용한 TOD 시간분할 최적화)

  • Hwang, Jae-Yeon;Park, Minju;Kim, Yongho;Kang, Woojin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.113-129
    • /
    • 2021
  • Recently, traffic congestion in the city is continuously increasing due to the expansion of the living area centered in the metropolitan area and the concentration of population in large cities. New road construction has become impossible due to the increase in land prices in downtown areas and limited sites, and the importance of efficient data-based road operation is increasingly emerging. For efficient road operation, it is essential to classify appropriate scenarios according to changes in traffic conditions and to operate optimal signals for each scenario. In this study, the Dynamic Time Warping model for cluster analysis of time series data was applied to traffic volume and speed data collected at continuous intersections for optimal scenario classification. We propose a methodology for composing an optimal signal operation scenario by analyzing the characteristics of the scenarios for each data used for classification.

Planning Routes of Bicycle Lanes in Suwon City Using Big Data Analysis (빅데이터 분석을 통한 수원시 자전거 전용차로 도입 방안)

  • Kim, Suk Hee;Kim, Hyung Jun;Lee, Nam Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • Recently, bicycle sharing system is introduced and the usage of shared bicycles is increasing in Suwon city. Despite the need to expand the bicycle road infrastructure, this is not the case. Therefore, this research attempts to propose a method for bicycle lane installation in Suwon city. For this, this research conducted location analysis based on the shared bicycle usage data and trip inducing facility data. Using location analysis results, appropriate routes for bicycle lanes are selected. As a result, two routes are selected. These routes have advantages that it is easy to connect with the existing bicycle roads or traffic inducing facilities and to install using the existing bicycle roads. However, these routes also have disadvantage that traffic congestion may occur due to the occupancy of the existing road space. It is expected that this research may contribute to expansion and maintenance of bicycle lane infrastructure, the bicycle and PM sharing service usage, implementation of sustainable urban transportation systems in Suwon city.

A Study on the Safety Index Service Model by Disaster Sector using Big Data Analysis (빅데이터 분석을 활용한 재해 분야별 안전지수 서비스 모델 연구)

  • Jeong, Myoung Gyun;Lee, Seok Hyung;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.682-690
    • /
    • 2020
  • Purpose: This study builds a database by collecting and refining disaster occurrence data and real-time weather and atmospheric data. In conjunction with the public data provided by the API, we propose a service model for the Big Data-based Urban Safety Index. Method: The plan is to provide a way to collect various information related to disaster occurrence by utilizing public data and SNS, and to identify and cope with disaster situations in areas of interest by real-time dashboards. Result: Compared with the prediction model by extracting the characteristics of the local safety index and weather and air relationship by area, the regional safety index in the area of traffic accidents confirmed that there is a significant correlation with weather and atmospheric data. Conclusion: It proposed a system that generates a prediction model for safety index based on machine learning algorithm and displays safety index by sector on a map in areas of interest to users.

Machine Learning-based Estimation of the Concentration of Fine Particulate Matter Using Domain Adaptation Method (Domain Adaptation 방법을 이용한 기계학습 기반의 미세먼지 농도 예측)

  • Kang, Tae-Cheon;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1208-1215
    • /
    • 2017
  • Recently, people's attention and worries about fine particulate matter have been increasing. Due to the construction and maintenance costs, there are insufficient air quality monitoring stations. As a result, people have limited information about the concentration of fine particulate matter, depending on the location. Studies have been undertaken to estimate the fine particle concentrations in areas without a measurement station. Yet there are limitations in that the estimate cannot take account of other factors that affect the concentration of fine particle. In order to solve these problems, we propose a framework for estimating the concentration of fine particulate matter of a specific area using meteorological data and traffic data. Since there are more grids without a monitor station than grids with a monitor station, we used a domain adversarial neural network based on the domain adaptation method. The features extracted from meteorological data and traffic data are learned in the network, and the air quality index of the corresponding area is then predicted by the generated model. Experimental results demonstrate that the proposed method performs better as the number of source data increases than the method using conditional random fields.

Design and Implementation of an Urban Safety Service System Using Realtime Weather and Atmosphere Data (실시간 기상 및 대기 데이터를 활용한 도시안전서비스 시스템 설계 및 구현)

  • Hwang, Hyunsuk;Seo, Youngwon;Jeon, Taegun;Kim, Changsoo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.599-608
    • /
    • 2018
  • As natural disasters are increasing due to the unusual weather and the modern society is getting complicated, the rapid change of the urban environment has increased human disasters. Thus, citizens are becoming more anxious about social safety. The importance of preparation for safety has been suggested by providing the disaster safety services such as regional safety index, life safety map, and disaster safety portal application. In this paper, we propose an application framework to predict the urban safety index based on user's location with realtime weather/atmosphere data after creating a predication model based on the machine learning using number of occurrence cases and weather/atmosphere history data. Also, we implement an application to provide traffic safety index with executing preprocessing occurrence cases of traffic and weather/atmosphere data. The existing regional safety index, which is displayed on the Si-gun-gu area, has been mainly utilized to establish safety plans for districts vulnerable to national policies on safety. The proposed system has an advantage to service useful information to citizens by providing urban safety index based on location of interests and current position with realtime related data.

Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si (머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 -)

  • Lee, Suhyeon;Suh, Youngwon;Kim, Sein;Lee, Jaekyung;Yun, Wonjoo
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.