• Title/Summary/Keyword: Traffic Route

Search Result 663, Processing Time 0.031 seconds

A Study on the Analysis of Traffic Distribution and Traffic Pattern on Traffic Route using ND-K-S (ND-K-S를 적용한 항로 통항분포와 통항패턴 분석에 관한 연구)

  • Kim, Jong-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.446-452
    • /
    • 2018
  • A traffic route is an area associated with high risk for accidents due to the flow of heavy traffic. Despite this concern, most studies related to traffic focus solely on traffic distribution. Therefore, there is a need for studies investigating the characteristics of ships' routes and traffic patterns. In this study, an investigation was carried out to analyze the traffic distribution and pattern in 3 major traffic routes for 3 days. For the purpose of the study, based on the prevailing traffic conditions, the route was divided into 10 gate lines. The ships passing through the lines were also classified into either small, medium and large. ND-K-S (normal distribution, kurtosis, and skewness) test was carried out for the traffic distribution at each gate line based on the information analyzed on each traffic route. The analysis of the results obtained from the ND test showed that large vessels have normal distribution, medium sized vessels have satisfied normal distribution in one-way route only while small sized vessels do not have normal distribution. According to the result obtained from the K-S test, normal traffic pattern shows a significant difference between two-way route and one-way route. Results obtained from the K test result shows that in the case of one-way route, vessels have a traffic pattern using a wide range on traffic route. Further analysis shows that vessels concentrate on one side of route in case of two-way route. Results obtained from the S test show that, in case of one-way route, vessels have a normal traffic pattern according to center line. However, analysis pf the results shows that vessels are shifted to the right side of route in case of two-way route. Despite these findings, it should be noted that this study was carried out in only 3 ports, therefore there is need for investigation to be carried out in various routes and conditions in future studies.

An optimal and genetic route search algorithm for intelligent route guidance system (지능형 주행 안내 시스템을 위한 유전 알고리즘에 근거한 최적 경로 탐색 알고리즘)

  • Choe, Gyoo-Seok;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.156-161
    • /
    • 1997
  • In this thesis, based on Genetic Algorithm, a new route search algorithm is presented to search an optimal route between the origin and the destination in intelligent route guidance systems in order to minimize the route traveling time. The proposed algorithm is effectively employed to complex road networks which have diverse turn constrains, time-delay constraints due to cross signals, and stochastic traffic volume. The algorithm is also shown to significantly promote search efficiency by changing the population size of path individuals that exist in each generation through the concept of age and lifetime to each path individual. A virtual road-traffic network with various turn constraints and traffic volume is simulated, where the suggested algorithm promptly produces not only an optimal route to minimize the route cost but also the estimated travel time for any pair of the origin and the destination, while effectively avoiding turn constraints and traffic jam.

  • PDF

A Study on Predictive Traffic Information Using Cloud Route Search (클라우드 경로탐색을 이용한 미래 교통정보 예측 방법)

  • Jun Hyun, Kim;Kee Wook, Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.287-296
    • /
    • 2015
  • Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

A Study on Intuitive Technique of Risk Assessment for Route of Ships Transporting Hazardous and Noxious Substance

  • Jeong, Min-Gi;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • Despite the development of safety measures and improvements in preventive systems technologies, maritime traffic accidents that involve ships carrying hazardous and noxious substances (HNS) continuously occur owing to increased amount of HNS goods transported and the growing number of HNS fleet. To prevent maritime traffic accidents involving ships carrying HNS, this study proposes an intuitive route risk assessment technique using risk contours that can be visually and quantitatively analyzed. The proposed technique offers continuous information based on quantified values. It determines and structures route risk factors classified as absolute danger, absolute factors, and influential factors within the assessment area. The route risk is assessed in accordance with the proposed algorithmic procedures by means of contour maps overlaid on electronic charts for visualization. To verify the effectiveness of the proposed route risk assessment technique, experimental case studies under various conditions were conducted to compare results obtained by the proposed technique to actual route plans used by five representative companies operating the model ship carrying HNS. This technique is beneficial not only for assessing the route risk of ships carrying HNS, but also for identifying better route options such as recommended routes and enhancing navigation safety. Furthermore, this technique can be used to develop optimized route plans for current maritime conditions in addition to future autonomous navigation application.

Design and Implementation of a Realtime Public Transport Route Guidance System using Big Data Analysis (빅데이터 분석 기법을 이용한 실시간 대중교통 경로 안내 시스템의 설계 및 구현)

  • Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.460-468
    • /
    • 2019
  • Recently, analysis techniques to extract new meanings using big data analysis and various services using these analysis techniques have been developed. Among them, the transport is one of the most important areas that can be utilized about big data. However, the existing traffic route guidance system can not recommend the optimal traffic route because they use only the traffic information when the user search the route. In this paper, we propose a realtime optimal traffic route guidance system using big data analysis. The proposed system considers the realtime traffic information and results of big data analysis using historical traffic data. And, the proposed system show the warning message to the user when the user need to change the traffic route.

A Study on the Optimal Probability Distribution for the Time Interval Between Ships on the Traffic Route of the Busan North Port (부산 북항 통항 선박간의 시간간격 최적 확률분포에 관한 연구)

  • Kim, Jong-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.413-419
    • /
    • 2019
  • Traffic routes typically have heavy traffic. Especially, the entrance of the route has a high risk of accidents occurring because of ships entering and exiting the port. However, almost of studies have focused on the distribution of traffic on the route. Thus, studies on the distribution between ships for passing through the route are insufficient. The purpose of this study was to analysis the traffic in the Busan north port No.1 route for one week. Based on present traffic conditions, one gate line was settled on the route with an analysis of traffic conditions. Based on the analysis data, each optimal time probability distribution between ships was divided into inbound/outbound and traffic volume. An analysis of the optimal probability distribution, was applied to 31 probability distributions divided into bounded, unbounded, non-negative, and advanced probability distribution. The KS test was applied for identifying three major optimal time probability distributions. According to the KS test results, the Wakeby distribution is the best optimal time probability distribution on the designated route. Although the optimal time probability distribution for other transportation studies such as on vehicles on highways is a non-negative probability distribution, this distribution is an advanced probability distribution. Thus, the application of major probability distribution for using other transportation studies is not applicable to this study Additionally, the distance between ships in actual traffic surveys and the distance estimated by the optimal probability distribution were compared. As a result of the comparison, those distances were fairly similar. However, this study was conducted in only one major port. Thus, it is necessary to investigate the time between ships and calculate a traffic volume on varying routes in future studies.

A Study on the Improvement of Marine Traffic System in the Ulsan Approaching Waters (울산항 접근 수역의 해상교통시스템 개선에 관한 연구)

  • Lee, Seung-Hwan;Kim, Chol-Seong;Jong, Jae-Yong;Park, Gyei-Kark
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.25-30
    • /
    • 2006
  • Marine traffics near Ulsan approaching waters are crossing and converged at the diverging point of No.1 route- No.2 route and No.1 route -No.3 route and are also concentrated at near No1. route approaching area and the headland of cape Gawnjeol. Because the number of berth will increase to 78 from 49 until 2011 due to additional developments, minor modification is expected for the water utilities. This study examined environmental conditions, marine accidental data, marine traffic capacity, traffic flow survery and fisheries zone status near Ulsan approaching water area. Finally, a questionaire survey was carried ou for experts and users to propose new plan.

  • PDF

Spatial experience based route finding using ontologies

  • Barzegar, Maryam;Sadeghi-Niaraki, Abolghasem;Shakeri, Maryam
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.247-257
    • /
    • 2020
  • Spatial experiences in route finding, such as the ability of finding low-traffic routes, exert a significant influence on travel time in big cities; therefore, the spatial experiences of seasoned individuals such as taxi drivers in route finding can be useful for improving route-finding algorithms and preventing using routes having considerable traffic. In this regard, a spatial experience-based route-finding algorithm is introduced through ontology in this paper. To this end, different methods of modeling experiences are investigated. Then, a modeling method is chosen for modeling the experiences of drivers for route finding depending on the advantages of ontology, and an ontology based on the taxi drivers' experiences is proposed. This ontology is employed to create an ontology-based route-finding algorithm. The results are compared with those of Google maps in terms of route length and travel time at peak traffic time. According to the results, although the route lengths of route-finding method based on the ontology of drivers' experiences in three cases (from nine cases) are greater than that based on Google maps, the travel times are shorter in most cases, and in some routes, the difference in travel time reaches only 10 minutes.

Course Variance Clustering for Traffic Route Waypoint Extraction

  • Onyango Shem Otoi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.277-279
    • /
    • 2022
  • Rapid Development and adoption of AIS as a survailance tool has resulted in widespread application of data analysis technology, in addition to AIS ship trajectory clustering. AIS data-based clustering has become an increasingly popular method for marine traffic pattern recognition, ship route prediction and anomaly detection in recent year. In this paper we propose a route waypoint extraction by clustering ships CoG variance trajectory using Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm in both port approach channel and coastal waters. The algorithm discovers route waypoint effectively. The result of the study could be used in traffic route extraction, and more-so develop a maritime anomaly detection tool.

  • PDF