• 제목/요약/키워드: Traffic Prediction Model

검색결과 370건 처리시간 0.026초

Network traffic prediction model based on linear and nonlinear model combination

  • Lian Lian
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.461-472
    • /
    • 2024
  • We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.

A network traffic prediction model of smart substation based on IGSA-WNN

  • Xia, Xin;Liu, Xiaofeng;Lou, Jichao
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.366-375
    • /
    • 2020
  • The network traffic prediction of a smart substation is key in strengthening its system security protection. To improve the performance of its traffic prediction, in this paper, we propose an improved gravitational search algorithm (IGSA), then introduce the IGSA into a wavelet neural network (WNN), iteratively optimize the initial connection weighting, scalability factor, and shift factor, and establish a smart substation network traffic prediction model based on the IGSA-WNN. A comparative analysis of the experimental results shows that the performance of the IGSA-WNN-based prediction model further improves the convergence velocity and prediction accuracy, and that the proposed model solves the deficiency issues of the original WNN, such as slow convergence velocity and ease of falling into a locally optimal solution; thus, it is a better smart substation network traffic prediction model.

소음지도 제작을 위한 도로교통 소음예측식 비교연구 -국외 예측식을 중심으로- (A comparative Study of Noise Prediction Method for Road Traffic Noise Map -Focused on Foreign Traffic Noise Prediction Method-)

  • 장환;방민;김흥식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.709-714
    • /
    • 2008
  • The various computer programs are used in computer simulation of the traffic noise prediction. But the difference or problem of calculation method used for road traffic noise prediction is not exactly investigated. In this paper, Road traffic noise is predicted on the specific regions by using four prediction methods such as XPS31-133 model(France), RLS-90 model(Germany), ASJ RTN model(Japan) and FHWA model(U.S.A.), which are operated by a program named SoundPLAN, a program to predict road traffic noise. Those prediction values are compared with a measurement value. The results show that four prediction values for taraffic noise are a little different, because of various input factors according to the prediction methods.

  • PDF

An Adaptable Integrated Prediction System for Traffic Service of Telematics

  • Cho, Mi-Gyung;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.171-176
    • /
    • 2007
  • To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.

교통량예측모형의 개발과 평가 (TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON UPSTREAM TRAFFIC)

  • 김창균
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.84-98
    • /
    • 1995
  • Network-based model were developed to predict short term future traffic volume based on current traffic, historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict the downstream traffic in a specific time period. Three models were developed for traffic flow prediction; a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models were evaluated using regression analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system is devised based on the relationships between the beginning period of prediction and the previous periods. The developed models were applied to 15-minute freeway data obtained by regular induction loop detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-to 45-minute. It is also found that the combined models usually produce more consistent forecasts than the historical average.

  • PDF

XGBoost를 이용한 교통노드 및 교통링크 기반의 교통사고 예측모델 개발 (Development of Traffic Accident Prediction Model Based on Traffic Node and Link Using XGBoost)

  • 김운식;김영규;고중훈
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.20-29
    • /
    • 2022
  • This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.

환경영향평가시 도로교통소음예측에 관한 개선방안 연구 (A Study on the Improvement of the Road Traffic Noise Prediction for Environmental Impact Assessment)

  • 이내현;박영민;선우영
    • 환경영향평가
    • /
    • 제10권4호
    • /
    • pp.297-304
    • /
    • 2001
  • Recently the road traffic noise has appeared as a significant environmental issue because of dramatic increase of vehicles and expansion of newly constructed road. Therefore, this study proposes the method that improves prediction factors and models through analysis of the existing road traffic noise prediction model. Prediction factors can be improved by establishing guideline for diffraction attenuation and applying daily traffic discharge, peak traffic discharge, and average traveling speed through an analysis of level service. Prediction must be made by periods of one or five years during 20 years. Prediction models also can be improved to include better prediction model through setting the database, establishing functional relation between physical properties and noise levels by acoustic analysis, and developing models for road traffic noise prediction in residential areas.

  • PDF

MPEG VBR 트래픽을 위한 GOP ARIMA 기반 대역폭 예측기법 (GOP ARIMA based Bandwidth Prediction for Non-stationary VBR Traffic)

  • 강성주;원유집
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.301-303
    • /
    • 2004
  • In this work, we develop on-line traffic prediction algorithm for real-time VBR traffic. There are a number of important issues: (i) The traffic prediction algorithm should exploit the stochastic characteristics of the underlying traffic and (ii) it should quickly adapt to structural changes in underlying traffic. GOP ARIMA model effectively addresses this issues and it is used as basis in our bandwidth prediction. Our prediction model deploy Kalman filter to incorporate the prediction error for the next prediction round. We examine the performance of GOP ARIMA based prediction with linear prediction with LMS and double exponential smoothing. The proposed prediction algorithm exhibits superior performam againt the rest.

  • PDF

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.