• 제목/요약/키워드: Traffic Information Collection

검색결과 202건 처리시간 0.023초

다중객체추적 알고리즘을 활용한 드론 항공영상 기반 미시적 교통데이터 추출 (Microscopic Traffic Parameters Estimation from UAV Video Using Multiple Object Tracking of Deep Learning-based)

  • 정보경;서성혁;박부기;배상훈
    • 한국ITS학회 논문지
    • /
    • 제20권5호
    • /
    • pp.83-99
    • /
    • 2021
  • 4차 산업혁명의 도래와 함께 자율주행자동차의 주행관리 및 주행 전략과 관련된 연구들이 대두되고 있다. 이러한 연구를 위해서는 차량의 미시적 교통데이터의 확보가 필수적이나, 기존 교통정보 수집 방식은 개별차량의 주행행태를 수집할 수 없다. 본 연구에서는 미시적 교통정보를 수집 가능한 항공에서 내려다보는 관점의 교통정보 수집을 위해 드론 항공영상을 활용하였다. 관련 연구의 한계점을 극복하기 위하여 딥러닝 기반 다중객체추적 알고리즘과 영상정합을 활용하여 미시적 교통데이터를 추출하였다. 그 결과로 속도는 MAE 3.49km/h, RMSE 4.43km/h, MAPE 5.18km/h의 오차율과 교통량 Precision 98.07%, Recall 97.86%의 정확도를 획득하였다.

순환 신경망 기반 딥러닝 모델들을 활용한 실시간 스트리밍 트래픽 예측 (Real-Time Streaming Traffic Prediction Using Deep Learning Models Based on Recurrent Neural Network)

  • 김진호;안동혁
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권2호
    • /
    • pp.53-60
    • /
    • 2023
  • 최근 실시간 스트리밍 플랫폼을 기반으로 한 다양한 멀티미디어 컨텐츠의 수요량과 트래픽 양이 급격히 증가하고 있는 추세이다. 본 논문에서는 실시간 스트리밍 서비스의 품질을 향상시키기 위해서 실시간 스트리밍 트래픽을 예측한다. 네트워크 트래픽을 예측하기 위해 통계적 모형을 활용하였으나, 실시간 스트리밍 트래픽은 매우 동적으로 변화함에 따라 통계적 모형보다는 순환 신경망 기반 딥러닝 모델이 적합하다. 따라서, 실시간 스트리밍 트래픽을 수집, 정제 후 Vanilla RNN, LSTM, GRU, Bi-LSTM, Bi-GRU 모델을 활용하여 예측하며, 각 모델의 학습 시간, 정확도를 측정하여 비교한다.

고속도로 교통정보 취득을 위한 프루브 차량 비율 산정 연구 (Rate of Probe Vehicles for the Collection of Traffic Information on Expressways)

  • 김지원;정하림;강성관;윤일수
    • 한국ITS학회 논문지
    • /
    • 제18권6호
    • /
    • pp.262-274
    • /
    • 2019
  • 본 연구에서는 영동 고속도로 용인IC ~ 양지IC 구간을 대상으로 미시교통시뮬레이션 모형인 VISSIM을 이용하여 고속도로 교통정보 취득을 위한 프루브 차량 최소 비율을 추정하고자 한다. 실험을 위하여 일반상황과 유고상황을 고려한 7,200 가지의 시나리오를 생성하였다. 하지만, 모든 시나리오를 실험을 통해 수행하기에는 어려움이 있어 라틴 하이퍼큐브 샘플링(Latin Hypercube sampling) 방법을 사용하여 40 가지의 시나리오를 채택하였다. 이를 통해 얻은 개별차량의 1초당 데이터를 얻어 프루브 차량 비율을 세분화하여 평균통행시간 분포를 통계적으로 비교 분석 해본 결과 일반 상황에서는 고속도로 교통정보 취득을 위한 프루브 차량의 최소 비율이 1%였고 유고상황에서는 45%로 산정되었다. 또한 시나리오 분석 결과 25%의 프루브 차량 정보를 가지고 유고상황 시나리오 교통상황 중 70%를 충족시킬 수 있는 것으로 확인되었다.

집단 정박지 안전관리 개선방안에 대한 제언 (Suggestions for Improvement Things for Group Anchorage Safety Management)

  • 이상원;정선미;김윤하
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.24-25
    • /
    • 2022
  • 집단 정박지인 부산항 남외항 정박지 사례를 기초로 집단 정박지 안전관리 증진을 위한 관련 규정, 정박선 선회반경 그리고 더 정확한 기상정보 수집과 현실에 부합하는 투묘위치를 적용하기 위한 시스템 관제지원 기능개선을 통한 안전관리 개선방안에 대한 제언입니다.

  • PDF

TCS데이터를 이용한 이상치제거 및 결측보정 알고리즘 개발 (Outlier Filtering and Missing Data Imputation Algorithm using TCS Data)

  • 도명식;이향미;남궁성
    • 대한교통학회지
    • /
    • 제26권4호
    • /
    • pp.241-250
    • /
    • 2008
  • 지능형 교통체계구축과 교통 혼잡이 증가하면서 이용자는 과거보다 양질의 통행시간정보를 요구하고 있다. 기존 연구에서는 단속류, 연속류 모두 AVI검지기 자료를 이용한 이상치제거 및 통행시간 산출에 대한 연구가 많이 이루어져왔다. 현재 한국도로공사에서는 TCS(Toll Collection System)를 기반으로 정보제공을 준비 중에 있으며, TCS 데이터는 운전자가 실제교통상황을 경험한 동적특성을 가진 통행시간이 수집된 자료로 통행시간 추정자료로 잠재력이 크다. 그러나 '시간처짐현상'이 발생하고 속도위반, 휴게소, 고장 등으로 인해 평균통행시간보다 작거나 큰 이상치와 결측데이터가 존재하여 기존 방법을 적용하는데 효과적이지 못한 것으로 나타났다. 따라서 본 연구에서는 TCS 데이터에 맞는 이상치제거 및 결측보정 알고리즘을 개발하였다. 기존알고리즘과 비교한 결과 개발 알고리즘이 더 효과적인 것으로 나타났다.

유비쿼터스 환경의 프로브 차량 정보를 활용한 표본 OD 전수화 (제주시 시범사업지역을 대상으로) (Expansion of Sample OD Based on Probe Vehicle Data in a Ubiquitous Environment)

  • 정소영;백승걸;강정규
    • 대한교통학회지
    • /
    • 제26권4호
    • /
    • pp.123-133
    • /
    • 2008
  • 최근 교통 물류 분야에서도 유비쿼터스 환경의 정보수집체계 및 이를 응용한 서비스 개발의 필요성이 매년 높아지고 있다. 프로브 차량과 무선통신기술을 활용한 교통정보 수집체계는 그 대표적인 사례로 차량의 기종점 자료를 이용하여 시간대별 OD를 산정하는 것이 가능하다. 그러나 프로브 차량 정보를 활용하여 산정된 OD는 시간적 공간적으로 변동되는 표본OD이기 때문에 이를 정적OD로 전환하기 위해서는 수집정보를 집적하여 적정 표본율을 산정하고, 표본OD를 전수화하는 과정이 필요하다. 본 연구는 제주시를 대상으로 수집된 실제 데이터를 표본OD 산정 및 전수화 알고리즘에 적용하여 표본OD를 산정하고 이를 전수화하였다. 각 링크별 관측교통량과 배분교통량과의 오차를 비교 검토한 결과 링크별 관측교통량 과 배분교통량의 평균 오차율은 22.9%, 상 하위 10%의 이상 자료를 제거한 후의 평균 오차율은 17.6%로 각각 나타났다. 본 연구는 기존OD가 존재하지 않는 지역에서 프로브 차량의 경로정보를 활용하여 정적OD를 산정하였다는 점과 적정 오차율 내 수렴을 위한 적정 표본율을 제시하였다는 점에서 그 의의를 찾을 수 있다.

실시간 교통정보 정확도 향상을 위한 이질적 교통정보 융합 연구 (Fusion Strategy on Heterogeneous Information Sources for Improving the Accuracy of Real-Time Traffic Information)

  • 김종진;정연식
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.67-74
    • /
    • 2022
  • 최근 높은 스마트폰 보급율과 ITS (intelligent transportation systems) 인프라 확충 등 정보통신기술(information and communications technology, ICT) 이용 활성화로 실시간 교통정보의 수집원이 증가하였다. 이렇게 다양하게 수집되는 실시간 교통정보의 정확도는 VDS(vehicle detection system), DSRC (dedicated short-range communications), GPS (global positioning system) probe와 같은 다양한 교통정보 수집원별 시공간 혹은 교통상황 등 다양한 환경에 따라 다르게 나타날 수 있다. 본 연구의 목적은 이질적 교통정보가 동시에 수집될 경우, 실시간 교통정보의 정확도를 향상시키기 위한 융합 전략의 제시에 있다. 이를 위해 고속국도(892.2 km, 227개 링크), 일반국도(937.0 km, 2,074개 링크)를 대상으로 주행 조사를 실시하였으며, 해당 링크 및 시간대에 probe 차량 5대의 평균 통행속도는 실시간 교통정보 수집원별(VDS or DSRC, GPS-based A, B) 정확도 평가의 기준 혹은 참값으로 활용되었다. 결과적으로 제시된 융합 전략에 대한 정확도 개선 효과는 일반국도에서 1개 수집원을 제외하고 모두 통계적으로 유의한 것으로 나타났으며, 향후 다양한 기관으로부터 서비스되는 실시간 교통정보가 동시에 연계되는 환경에서 보다 정확한 교통정보 서비스의 가능성을 확인하였다.

효율적인 보안관제 수행을 위한 다크넷 트래픽 기반 악성 URL 수집 및 분석방법 연구 (A Study on Collection and Analysis Method of Malicious URLs Based on Darknet Traffic for Advanced Security Monitoring and Response)

  • 김규일;최상수;박학수;고상준;송중석
    • 정보보호학회논문지
    • /
    • 제24권6호
    • /
    • pp.1185-1195
    • /
    • 2014
  • 국내 외 해킹공격 전담 대응조직(CERTs)들은 침해사고 피해 최소화 및 사전예방을 위해 탐지패턴 기반의 보안장비 등을 활용하여 사이버공격에 대한 탐지 분석 대응(즉, 보안관제)을 수행하고 있다. 그러나 패턴기반의 보안관제체계는 해킹공격을 탐지 및 차단하기 위해 미리 정의된 탐지규칙에 근거하여 알려진 공격에 대해서만 대응이 가능하기 때문에 신 변종 공격에 대한 대응은 어려운 실정이다. 최근 국내 외에서는 기존 보안관제의 이러한 문제점을 극복하기 위해 다크넷이라는 기술을 활용한 연구가 주목을 받고 있다. 다크넷은 미사용 중인 IP주소의 집합을 의미하며, 실제 시스템이 존재하지 않는 다크넷으로 유입된 패킷들은 악성코드에 감염된 시스템이나 해커에 의한 공격행위로 간주 될 수 있다. 따라서 본 연구에서는 효율적인 보안관제 수행을 위한 다크넷 트래픽 기반의 악성 URL 수집 및 분석방법을 제안한다. 제안방법은 국내 연구기관의 협력을 통해 확보한 8,192개(C클래스 32개)의 다크넷으로 유입된 전체 패킷을 수집하였으며, 정규표현식을 사용하여 패킷에 포함된 모든 URL을 추출하고 이에 대한 심층 분석을 수행하였다. 본 연구의 분석을 통해 얻어진 결과는 대규모 네트워크에서 발생하고 있는 사이버 위협상황에 대한 신속 정확한 관측이 가능할 뿐만 아니라 추출한 악성 URL을 보안관제에 적용(보안장비 탐지패턴, DNS 싱크홀 등)함으로서 해킹공격에 대한 사이버위협 대응체계를 고도화하는데 목적을 둔다.

고속도로 교통정보 수집을 위한 V2X 차량비율 추정연구 (A Study on the Estimation of the V2 X-Rate Ratio for the Collection of Highway Traffic Information)

  • 나성용;이승재;안상현;김주영
    • 한국ITS학회 논문지
    • /
    • 제17권1호
    • /
    • pp.71-78
    • /
    • 2018
  • 교통은 점차 V2X와 자율주행자동차의 시대로 변화하고 있다. 교통상황에 대한 정확한 판단은 경로선택 또는 자율주행에 있어 중요한 지표이다. 정확한 교통상황을 파악하기 위한 방법으로 택시와 같은 프로브 차량을 이용하는 방법이 많이 사용되고 있다. 이러한 방법은 프로브 차량의 특성에 따라 데이터가 편향될 수 있으며, 막대한 비용이 발생하는 문제점이 있다. V2X 차량은 이러한 문제점을 해결할 수 있으며, 무엇보다 실시간으로 교통정보를 수집하고, 배포가 가능할 것으로 판단된다. 모든 차량이 V2X 차량일 경우, 이러한 문제는 간단하게 해결될 것으로 기대된다. 하지만 일부만 V2X차량일 때는 대표성의 문제가 검토되어야 한다. 이를 위하여 가상의 네트워크와 교통류를 생성하였으며, SUMO 시뮬레이션을 통해 다양한 시나리오분석을 수행하였다. 교통량 수준에 따라 V2X 차량군과 Non-V2X 차량군 사이의 통행시간에 대한 통계적 검증을 수행하였다. 3~5% 이상으로 구성된 교통류 또는 110대/시이상으로 V2X 차량이 구성된 교통류에서는 V2X 차량의 통행정보가 대표성을 띌 수 있다는 것을 확인하였다. 향후 다양한 네트워크 및 실제 상황에 대하여 적용하고자 한다.

Tripwire 및 Tracking 기반의 영상검지시스템 개발 (Autoscope와의 성능비교를 중심으로) (Development of Video Image Detection System based on Tripwire and Vehicle Tracking Technologies focusing performance analysis with Autoscope)

  • 오주택;민준영;김승우;허병도;김명섭
    • 대한교통학회지
    • /
    • 제26권2호
    • /
    • pp.177-186
    • /
    • 2008
  • 영상검지기(Video Image Detection System)는 교통운영 및 안전 등 교통류 관리를 위한 다양한 측면에서 이용될 수 있다. 영상검지기법은 크게 Tripwire System과 Tracking System으로 구분할 수 있으며, 가장 대표적으로 이용되는 Autoscope는 Tripwire System에 해당한다. 본 연구에서는 Autoscope의 성능을 구현할 수 있는 Tripwire 기반의 영상검지 기술을 자체적으로 개발함과 동시에, 미시적 교통정보를 취득할 수 있는 개별차량 추적기술을 이용한 Tracking 기반의 영상검지시스템을 개발하였다. 개발된 두 시스템의 통합에 앞서서, 동일한 영상과 분석시간을 가지고 기초적인 교통정보수집 능력에 대한 성능비교 및 분석을 수행하고자 하였으며, 우수성 및 정확성을 판단하기 위한 지표로는 가장 보편적이고 일반적으로 사용되고 있는 Autoscope를 이용하였다. 개발된 두 시스템과 Autoscope를 이용하여 성능비교를 수행한 결과, 교통량의 경우, 실제 교통량 대비 0.35%의 오차를 보였으며 Autoscope와 비교하여 1.78%의 오차를 보였다. 속도에 대한 성능비교는 Autoscope와 비교하여 최대 1.77%의 오차를 보여 개발된 두 시스템의 성능이 우수한 것으로 확인되었다.