• Title/Summary/Keyword: Traffic Flow Prediction

Search Result 89, Processing Time 0.026 seconds

Design Methodology of System-Level Simulators for Wideband CDMA Cellular Standards (광대역 CDMA 셀룰러 표준을 위한 시스템 수준 시뮬레이터의 설계 방법론)

  • Park, Sungkyung
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2013
  • This tutorial paper presents the design methodology of system-level simulators targeted for code division multiple access (CDMA) cellular standards such as EV-DO (Evolution-Data Only) and broadcast multicast service (BCMCS). The basic structure and simulation flow of system-level simulators are delineated, following the procedure of cell layout, mobile drops, channel modeling, received power calculation, scheduling, packet error prediction, and traffic generation. Packet data transmissions on the forward link of CDMA systems and EV-DO BCMCS systems are considered for modeling simulators. System-level simulators for cellular standards are modeled and developed with high-level languages and utilized to evaluate and predict air interface performance metrics including capacity and coverage.

Comparison of Dynamic Origin Destination Demand Estimation Models in Highway Network (고속도로 네트워크에서 동적기종점수요 추정기법 비교연구)

  • 이승재;조범철;김종형
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2000
  • The traffic management schemes through traffic signal control and information provision could be effective when the link-level data and trip-level data were used simultaneously in analysis Procedures. But, because the trip-level data. such as origin, destination and departure time, can not be obtained through the existing surveillance systems directly. It is needed to estimate it using the link-level data which can be obtained easily. Therefore the objective of this study is to develop the model to estimate O-D demand using only the link flows in highway network as a real time. The methodological approaches in this study are kalman filer, least-square method and normalized least-square method. The kalman filter is developed in the basis of the bayesian update. The normalized least-square method is developed in the basis of the least-square method and the natural constraint equation. These three models were experimented using two kinds of simulated data. The one has two abrupt changing Patterns in traffic flow rates The other is a 24 hours data that has three Peak times in a day Among these models, kalman filer has Produced more accurate and adaptive results than others. Therefore it is seemed that this model could be used in traffic demand management. control, travel time forecasting and dynamic assignment, and so forth.

  • PDF

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning via Predictive Modeling of Future Location

  • Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1726-1748
    • /
    • 2024
  • Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.

Research on Malware Classification with Network Activity for Classification and Attack Prediction of Attack Groups (공격그룹 분류 및 예측을 위한 네트워크 행위기반 악성코드 분류에 관한 연구)

  • Lim, Hyo-young;Kim, Wan-ju;Noh, Hong-jun;Lim, Jae-sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.193-204
    • /
    • 2017
  • The security of Internet systems critically depends on the capability to keep anti-virus (AV) software up-to-date and maintain high detection accuracy against new malware. However, malware variants evolve so quickly they cannot be detected by conventional signature-based detection. In this paper, we proposed a malware classification method based on sequence patterns generated from the network flow of malware samples. We evaluated our method with 766 malware samples and obtained a classification accuracy of approximately 40.4%. In this study, malicious codes were classified only by network behavior of malicious codes, excluding codes and other characteristics. Therefore, this study is expected to be further developed in the future. Also, we can predict the attack groups and additional attacks can be prevented.

The Effect of Decentralized Rainwater Tank System on the Reduction of Peak Runoff - A Case Study at M Village - (빗물저류조의 분산배치에 따른 첨두유출 저감효과 분석 - M 마을 사례 -)

  • Han, Moo-Young;Kum, So-Yoon;Mun, Jung-Soo;Kwak, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Recently climate change and increase of surface runoff caused the urban flooding. Traditional way of dealing with urban flooding has been to increase the sewer capacity or construction of pumping stations, however, it is practically almost impossible because of time, money and traffic problems. Multipurpose DRMS (Decentralized Rainwater Management System) is a new paradigm proposed and recommended by NEMA (National Emergency Management Agency) for both flood control and water conservation. Suwon City has already enacted the ordinance on sound water cycle management by DRMS. In this study, a flood prone area in Suwon is selected and analysis of DRMS has been made using XP-SWMM for different scenarios of RT installation with same total rainwater tank volume and location. Installing one rainwater tank of 3,000$m^3$ can reduce the peak flow rate by 15.5%. Installing six rainwater tanks of 500$m^3$ volume in the area can reduce the peak flow rate by 28%. Three tanks which is concentrated in the middle region can reduce peak rate more than evenly distributed tanks. The method and results found from this study can be used for the design and performance prediction of DRMS at a flood prone area by supplementing the existing sewer system without increase of the sewer capacity.

A study of Improvement for Residential Environment according to Segementation of Residential Zoning (주거지역 종세분화에 따른 주거환경 개선에 관한 연구 - 바람길을 중심으로 -)

  • Kim, Dae-Wuk;Jung, Eung-Ho;Ryu, Ji-Won;Cha, Jae-Gyu;Lee, Jun-Young
    • Journal of the Korean housing association
    • /
    • v.21 no.2
    • /
    • pp.101-109
    • /
    • 2010
  • Various environmental problems due to rapid industrialization and urbanization have worsened to such an extent that they threaten the environmental restitution of the globe and become a critical international issue. Korean government has presented the concept of green growth as a new state vision for the next 60 years and is making efforts to solve these environmental problems. Daegu Metropolitan City has faced various environmental problems including overpopulation of the city, traffic pollution, household waste accumulation and the green zone problem because of the increase of urbanization over the last few decades. As such urbanization continues, the quality of residential environments is rapidly deteriorating and the intensive use of the land leads to an increase of building area, raising the temperatures of cities. There have therefore been demands for healthy, pleasant and satisfying residential environments and for the improvement of existing residential environments, and this demand has been fully recognized by society. Nevertheless, current residential complex developments concentrate only on raising the efficiency of land use. In related laws of the past (Daegu Metropolitan City, Urban Planning Municipal Ordinance as of October 10, 2003) an attempt was made to impose a standard to segmentalize the building-to-land ratio, floor area ratio and regulations of number of floors vertically. However, these laws have now been abolished and the regulations are being eased. The purpose of this study was to analyze the characteristics of the floating wind before and after the vertical segmentation of residential areas (Daegu Metropolitan City, Urban Planning Municipal Ordinance as of October 10, 2003) by using KLAM_21, a model that enables analysis and prediction of the flow and generation of cold wind. The purpose is also to present a plan to improve the quality of residential areas when developing a building lot and redeveloping housing areas.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea (경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로)

  • Jun, Seung-pyo;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.23-48
    • /
    • 2021
  • The Korean economy has achieved continuous economic growth for the past several decades thanks to the government's export strategy policy. This increase in exports is playing a leading role in driving Korea's economic growth by improving economic efficiency, creating jobs, and promoting technology development. Traditionally, the main factors affecting Korea's exports can be found from two perspectives: economic factors and industrial structural factors. First, economic factors are related to exchange rates and global economic fluctuations. The impact of the exchange rate on Korea's exports depends on the exchange rate level and exchange rate volatility. Global economic fluctuations affect global import demand, which is an absolute factor influencing Korea's exports. Second, industrial structural factors are unique characteristics that occur depending on industries or products, such as slow international division of labor, increased domestic substitution of certain imported goods by China, and changes in overseas production patterns of major export industries. Looking at the most recent studies related to global exchanges, several literatures show the importance of cultural aspects as well as economic and industrial structural factors. Therefore, this study attempted to develop a forecasting model by considering cultural factors along with economic and industrial structural factors in calculating the import volume of each country from Korea. In particular, this study approaches the influence of cultural factors on imports of Korean products from the perspective of PUSH-PULL framework. The PUSH dimension is a perspective that Korea develops and actively promotes its own brand and can be defined as the degree of interest in each country for Korean brands represented by K-POP, K-FOOD, and K-CULTURE. In addition, the PULL dimension is a perspective centered on the cultural and psychological characteristics of the people of each country. This can be defined as how much they are inclined to accept Korean Flow as each country's cultural code represented by the country's governance system, masculinity, risk avoidance, and short-term/long-term orientation. The unique feature of this study is that the proposed final prediction model can be selected based on Design Principles. The design principles we presented are as follows. 1) A model was developed to reflect interest in Korea and cultural characteristics through newly added data sources. 2) It was designed in a practical and convenient way so that the forecast value can be immediately recalled by inputting changes in economic factors, item code and country code. 3) In order to derive theoretically meaningful results, an algorithm was selected that can interpret the relationship between the input and the target variable. This study can suggest meaningful implications from the technical, economic and policy aspects, and is expected to make a meaningful contribution to the export support strategies of small and medium-sized enterprises by using the import forecasting model.