• Title/Summary/Keyword: Traffic Flow Prediction

Search Result 89, Processing Time 0.027 seconds

Field measurement study on snow accumulation process around a cube during snowdrift

  • Wenyong Ma;Sai Li;Xuanyi Zhou;Yuanchun Sun;Zihan Cui;Ziqi Tang
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2023
  • Due to the complexity and difficulty in meeting the multiphase flow complexity, similarity, and multiscale characteristics, the mechanism of snow drift is so complicated that the snow deposition prediction is still inaccurate and needs to be far improved. Meanwhile, the validation of prediction methods is also limited due to a lack of field-measured data about snow deposition. To this end, a field measurement activity about snow deposition around a cube with time was carried out, and the snow accumulation process was measured under blowing snow conditions in northwest China. The maximum snow depth, snow profile, and variation in snow depth around the cube were discussed and analyzed. The measured results indicated three stages of snow accumulation around the cube. First, snow is deposited in windward, lateral and leeward regions, and then the snow depth in windward and lateral regions increases. Secondly, when the snow in the windward region reaches its maximum, the downwash flow erodes the snow against the front wall. Meanwhile, snow range and depth in lateral regions have a significant increase. Thirdly, a narrow road in the leeward region is formed with the increase in snow range and depth, which results in higher wind speed and reforming snow deposition there. The field measurement study in this paper not only furthers understanding of the snow accumulation process instead of final deposition under complex conditions but also provides an important benchmark for validating prediction methods.

Arrival Time Estimation for Bus Information System Using Hidden Markov Model (은닉 마르코프 모델을 이용한 버스 정보 시스템의 도착 시간 예측)

  • Park, Chul Young;Kim, Hong Geun;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • BIS(Bus Information System) provides the different information related to buses including predictions of arriving times at stations. BIS have been deployed almost all cities in our country and played active roles to improve the convenience of public transportation systems. Moving average filters, Kalman filter and regression models have been representative in forecasting the arriving times of buses in current BIS. The accuracy in prediction of arriving times depends largely on the forecasting algorithms and traffic conditions considered when forecasting in BIS. In present BIS, the simple prediction algorithms are used only considering the passage times and distances between stations. The forecasting of arrivals, however, have been influenced by the traffic conditions such as traffic signals, traffic accidents and pedestrians ets., and missing data. To improve the accuracy of bus arriving estimates, there are big troubles in building models including the above problems. Hidden Markov Models have been effective algorithms considering various restrictions above. So, we have built the HMM forecasting models for bus arriving times in the current BIS. When building models, the data collected from Sunchean City at 2015 have been utilized. There are about 2298 stations and 217 routes in Suncheon city. The models are developed differently week days and weekend. And then the models are conformed with the data from different districts and times. We find that our HMM models can provide more accurate forecasting than other existing methods like moving average filters, Kalmam filters, or regression models. In this paper, we propose Hidden Markov Model to obtain more precise and accurate model better than Moving Average Filter, Kalman Filter and regression model. With the help of Hidden Markov Model, two different sections were used to find the pattern and verified using Bootstrap process.

Long-Term Arrival Time Estimation Model Based on Service Time (버스의 정차시간을 고려한 장기 도착시간 예측 모델)

  • Park, Chul Young;Kim, Hong Geun;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.7
    • /
    • pp.297-306
    • /
    • 2017
  • Citizens want more accurate forecast information using Bus Information System. However, most bus information systems that use an average based short-term prediction algorithm include many errors because they do not consider the effects of the traffic flow, signal period, and halting time. In this paper, we try to improve the precision of forecast information by analyzing the influencing factors of the error, thereby making the convenience of the citizens. We analyzed the influence factors of the error using BIS data. It is shown in the analyzed data that the effects of the time characteristics and geographical conditions are mixed, and that effects on halting time and passes speed is different. Therefore, the halt time is constructed using Generalized Additive Model with explanatory variable such as hour, GPS coordinate and number of routes, and we used Hidden Markov Model to construct a pattern considering the influence of traffic flow on the unit section. As a result of the pattern construction, accurate real-time forecasting and long-term prediction of route travel time were possible. Finally, it is shown that this model is suitable for travel time prediction through statistical test between observed data and predicted data. As a result of this paper, we can provide more precise forecast information to the citizens, and we think that long-term forecasting can play an important role in decision making such as route scheduling.

Prediction of Rear-end Crash Potential using Vehicle Trajectory Data (차량 주행궤적을 이용한 후미추돌 가능성 예측 모형)

  • Kim, Tae-Jin;O, Cheol;Gang, Gyeong-Pyo
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.73-82
    • /
    • 2011
  • Recent advancement in traffic surveillance systems has allowed the researchers to obtain more detailed vehicular movement such as individual vehicle trajectory data. Understanding the characteristics of interactions between leading and following vehicles in the traffic flow stream is a backbone for designing and evaluating more sophisticated traffic and vehicle control strategies. This study proposes a methodology for estimating rear-end crash potential, as a probabilistic measure, in real-time based on the analysis of vehicular movements. The methodology presented in this study consists of three components. The first predicts vehicle position and speed every second using a Kalman filtering technique. The second estimates the probability for the vehicle's trajectory to belong to either 'changing lane' or 'going straight'. A binary logistic regression (BLR) is used to model the lane-changing decision of the subject vehicle. The other component calculates crash probability by employing an exponential decay function that uses time-to-collision (TTC) between the subject vehicle and the front vehicle. The result of this study is expected to be adapted in developing traffic control and information systems, in particular, for crash prevention.

Rolling Horizon Implementation for Real-Time Operation of Dynamic Traffic Assignment Model (동적통행배정모형의 실시간 교통상황 반영)

  • SHIN, Seong Il;CHOI, Kee Choo;OH, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.135-150
    • /
    • 2002
  • The basic assumption of analytical Dynamic Traffic Assignment models is that traffic demand and network conditions are known as a priori and unchanging during the whole planning horizon. This assumption may not be realistic in the practical traffic situation because traffic demand and network conditions nay vary from time to time. The rolling horizon implementation recognizes a fact : The Prediction of origin-destination(OD) matrices and network conditions is usually more accurate in a short period of time, while further into the whole horizon there exists a substantial uncertainty. In the rolling horizon implementation, therefore, rather than assuming time-dependent OD matrices and network conditions are known at the beginning of the horizon, it is assumed that the deterministic information of OD and traffic conditions for a short period are possessed, whereas information beyond this short period will not be available until the time rolls forward. This paper introduces rolling horizon implementation to enable a multi-class analytical DTA model to respond operationally to dynamic variations of both traffic demand and network conditions. In the paper, implementation procedure is discussed in detail, and practical solutions for some raised issues of 1) unfinished trips and 2) rerouting strategy of these trips, are proposed. Computational examples and results are presented and analyzed.

Study on a Neural UPC by a Multiplexer Information in ATM (ATM 망에서 다중화기 정보에 의한 Neural UPC에 관한 연구)

  • Kim, Young-Chul;Pyun, Jae-Young;Seo, Hyun-Seung
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.36-45
    • /
    • 1999
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. In this paper, Buffered Leaky Bucket which applies the same control scheme to a variety of traffics requiring the different QoS(Quality of Service) and Neural Networks lead to the effective buffer utilization and QoS enhancement in aspects of cell loss rate and mean transfer delay. And the cell scheduling algorithms such as DWRR and DWEDF for multiplexing the incoming traffics are enhanced to get the better fair delay. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate and buffer threshold are changed by the predicted values. The prediction of traffic loss rate by neural networks can enhance efficiency in controlling the cell loss rate and cell transfer delay of next incoming cells and also be applied for other traffic controlling schemes. Computer simulation results performed for random cell generation and traffic prediction show that QoSs of the various kinds of traffcis are increased.

  • PDF

Study on a Neural Network UPC Algorithm Using Traffic Loss Rate Prediction (트래픽 손실율 예측을 통한 신경망 UPC 알고리즘에 관한 연구)

  • 변재영;이영주정석진김영철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.126-129
    • /
    • 1998
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. This paper proposes a new UPC(Usage Parameter Control) mechanism that varies the token generation rate and the buffer threshold of leaky bucket by using a Neural Network controller observing input buffers and token pools, thus achieving the improvement of performance. Simulation results show that the proposed adaptive algorithm uses of network resources efficiently and satisfies QoS for the various kinds of traffics.

  • PDF

Numerical Study on Control Factors of Defrosting Performance for Automobile Windshield Glass in Winter (수치해석을 통한 자동차 전면유리 제상성능 제어인자 연구)

  • Youn, Young-Muk;Kader, Md. Faisal;Lee, Kum-Bae;Jun, Yong-Du
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.789-794
    • /
    • 2008
  • Recently, much attention has been paid in the field of defrosting because clear windshield in vehicle without effecting the thermal comfort is realized essentially. Then in winter, defrosting performance is one of the important factors in vehicle design to make certain driver's view. In this study, the velocity profile, temperature distribution and frost melting pattern on the windshield screen have been predicted in three dimensional geometry of an automobile interior. Numerical analyses predict a detailed description of fluid flow and temperature patterns on the inside windshield screen, utilizing the flow through defroster nozzle. Numerical prediction established a good defrosting performance with the standard distance ratio and the defroster nozzle angle ranging from $30^{\circ}$ to $40^{\circ}$, which satisfy the condition of National Highway Traffic Safety Administration (NHTSA) completely.

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model (차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구)

  • PARK, Seungjun;HONG, Kiman;KIM, Taegyun;SEO, Hyeon;CHO, Joong Rae;HONG, Young Suk
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.155-168
    • /
    • 2018
  • In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.