• Title/Summary/Keyword: Traffic Flow Characteristics

Search Result 266, Processing Time 0.03 seconds

An Algorithm to Detect P2P Heavy Traffic based on Flow Transport Characteristics (플로우 전달 특성 기반의 P2P 헤비 트래픽 검출 알고리즘)

  • Choi, Byeong-Geol;Lee, Si-Young;Seo, Yeong-Il;Yu, Zhibin;Jun, Jae-Hyun;Kim, Sung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.317-326
    • /
    • 2010
  • Nowadays, transmission bandwidth for network traffic is increasing and the type is varied such as peer-to-peer (PZP), real-time video, and so on, because distributed computing environment is spread and various network-based applications are developed. However, as PZP traffic occupies much volume among Internet backbone traffics, transmission bandwidth and quality of service(QoS) of other network applications such as web, ftp, and real-time video cannot be guaranteed. In previous research, the port-based technique which checks well-known port number and the Deep Packet Inspection(DPI) technique which checks the payload of packets were suggested for solving the problem of the P2P traffics, however there were difficulties to apply those methods to detection of P2P traffics because P2P applications are not used well-known port number and payload of packets may be encrypted. A proposed algorithm for identifying P2P heavy traffics based on flow transport parameters and behavioral characteristics can solve the problem of the port-based technique and the DPI technique. The focus of this paper is to identify P2P heavy traffic flows rather than all P2P traffics. P2P traffics are consist of two steps i)searching the opposite peer which have some contents ii) downloading the contents from one or more peers. We define P2P flow patterns on these P2P applications' features and then implement the system to classify P2P heavy traffics.

Supervised learning-based DDoS attacks detection: Tuning hyperparameters

  • Kim, Meejoung
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.560-573
    • /
    • 2019
  • Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.

Assessment of ride safety based on the wind-traffic-pavement-bridge coupled vibration

  • Yin, Xinfeng;Liu, Yang;Chen, S.R.
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.287-306
    • /
    • 2017
  • In the present study, a new assessment simulation of ride safety based on a new wind-traffic-pavement-bridge coupled vibration system is developed considering stochastic characteristics of traffic flow and bridge surface. Compared to existing simulation models, the new assessment simulation focuses on introducing the more realistic three-dimensional vehicle model, stochastic characteristics of traffic, vehicle accident criteria, and bridge surface conditions. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) is presented. A cellular automaton (CA) model and the surface roughness are introduced. The bridge deck pavement is modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model. The wind-traffic-pavement-bridge coupled equations are established by combining the equations of both the vehicles in traffic, pavement, and bridge using the displacement and interaction force relationship at the patch contact. The numerical simulation shows that the proposed method can simulate rationally useful assessment and prevention information for traffic, and define appropriate safe driving speed limits for vulnerable vehicles under normal traffic and bridge surface conditions.

A Mathematical Model for Determination of PCE's Based on Delay for Two-Lane Two-Way Highway (양방향 2차로 도로의 지체시간 산정을 이용한 승용차환산계수 결정이론)

  • 이승준;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.149-162
    • /
    • 1999
  • One of the most important steps of the design, capacity and operation analysis stapes in the two-lane two way highways is the effect of heavy vehicle to traffic flow quality. This heavy vehicle's effect on traffic flow can be represented as PCE, which is the number of passenger cars that are displaced by a single heavy vehicle of a particular type under prevailing roadway, traffic, and control conditions. In this paper, we focus on the heavy vehicles effect on volume, speed, delay, and the maneuver of freedom which are major MOE's in traffic operation analysis and PCE criterion which should be measurable, determinable and able to reflect the traffic flow characteristics. Therefore, the objective of the paper is to determine the PCE criterion and to develop a new PCE determination method. In this study, delay is adopted as PCE criterion and, for calculation of delay, the highway is divided into the passing zone and the no-passing zone. PCE is determined by comparing the delay due to total traffic flow interaction with the delay due to a single heavy vehicle, Also, this paper proposes a new method to determine the average PCE on the highway that has the passing zones and no-passing zones.

  • PDF

Development of Impulse Propagation Model between Lanes through Temporal-Spatial Analysis (시공간적 분석을 통한 차로간 충격량 전파모형 개발)

  • Kim, Sang-Gu;Ryu, Ju-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.123-137
    • /
    • 2011
  • In general, flow propagation has been explained using the shock wave theory which is expressed as a function of variations in volume and density. However, the theory has certain limitation in portraying heterogeneous flow, e.g., flow propagation between lanes. Motivated by this fact, this study seeks a new measure for analyzing the propagation characteristics of traffic flow at three sections of highway (i.e., merging area, weaving section, and basic section) from temporal and spatial perspectives, and then develops a model for estimating the measure for the flow propagation. The "shock wave speed" which is the measure widely adopted in literature, was first applied to describe the propagation characteristics, but it was hard to find distinct characteristics in the propagation. This finding inspires to develop a new measure named "Impulse Volume". It is shown that the measure better explains the propagation characteristics at the three study sections of highway. In addition, several models are also developed by performing multi-regression analyses to explain the flow propagation between lanes. The models proposed in this paper can be distinguished in three sections and the lane placement.

Analysis on the Marine Traffic Flow Characteristics for Gamcheon Harbor (감천항 해역에 대한 해상교통특성 분석)

  • Kim Jun-Hoon;Gug Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.397-404
    • /
    • 2006
  • Gamcheon harbor was developed as a multipurpose port to mix processing functions of exclusive piers for bulk cargo such as marine products, domestic cargoes. Since the container terminal was opened in 1997, maximum $40,000\sim50,000$ DWT containership have been incoming and outgoing. However, bemuse the breakwater entrance in Gamcheon harbor is narrow and the crossed vessels are ever-present at breakwater front, marine accident danger is high that grasping traffic characteristics is required in reply. Therefore marine traffic characteristics were analyzed for Gamcheon harbor and Gamcheon approaching waters, included the track and traffic volumes of peak hours period in inbound/outbound and front sea area of the harbor in present.

Analysis on the Marine Traffic Flow Characteristics for Gamcheon Harbor (감천항 입.출항에 관한 해상교통특성 분석)

  • Kim Jun-Hoon;Gug Seung-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.137-146
    • /
    • 2006
  • Gamcheon Harbor was developed as a multipurpose port to mix processing functions of exclusive piers for bulk cargo such as marine products. domestic cargo. Since the container terminal was opened in 1997. maximum $40,000{\sim}50,000$ DWT containership have been incoming and outgoing. However, because [he breakwater entrance in Gamcheon Harbor is narrow and the crossed passing of ship is ever-present at breakwater front, marine accident danger is high that grasping traffic characteristics is required in reply. Therefore marine traffic characteristics were analyzed for Gamcheon Harbor, included the track and traffic volumes of peak hours period in inbound/outbound and front sea area of the harbor in present.

  • PDF

A Weighted Fair Queuing Scheduler Guaranteeing Differentiated Packet Loss Rates (차별화된 패킷 손실률을 보장하는 가중치 기반 공정 큐잉 스케줄러)

  • Kim, Tae Joon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1453-1460
    • /
    • 2014
  • WFQ (Weighted Fair Queuing) provides not only fairness among traffic flows in using bandwidth but also guarantees the Quality of Service (QoS) that individual flow requires, which is why it has been applied to the resource reservation protocol (RSVP)-capable router. The RSVP allocates an enough resource to satisfy both the rate and end-to-end delay requirements of the flow in the condition of no packet loss, and the WFQ scheduler guarantees those QoS requirements with the allocated resource. In practice, however, most QoS-guaranteed services allow a degree of packet loss, especially from 0.1% to 3% for Voice over IP. This paper discovers that the packet loss rate of each traffic flow is determined by only its time-stamp adjustment value, and then enhances the WFQ to provide a differentiated packet loss guarantee under general traffic conditions in terms of both traffic characteristics and QoS requirements. The performance evaluation showed that the proposed WFQ could increase the utilization of bandwidth by 8~11%.