• Title/Summary/Keyword: Traffic Flow

Search Result 1,368, Processing Time 0.026 seconds

Mathematical Modeling for Traffic Flow (교통흐름의 수학적 모형)

  • Lee, Seong-Cheol
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.127-131
    • /
    • 2011
  • Even if there are no causing factors such as car crash and road works, traffic congestion come from traffic growth on the road. In this case, estimation of traffic flow helps find the solution of traffic congestion problem. In this paper, we present a optimization model which used on traffic equilibrium problem and studied the problem of inverting shortest path sets for complex traffic system. And we also develop pivotal decomposition algorithm for reliability function of complex traffic system. Several examples are illustrated.

Estimation of the Traffic Flow in the Korea Coastal Waterway by Computer Simulation (우리나라 연안의 해상교통관제시스템 설치를 위한 기초연구 시뮬레이션에 의한 우리나라 연안의 해상교통량 추정)

  • 구자윤;박양기;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.1
    • /
    • pp.85-112
    • /
    • 1988
  • From the point of view of safety of life and property at sea and the protection of the marine environment, the Vessel Traffic Management System along the Korea coastal waterway is inevitably introduced. But the establishing priority per area must be evaluated under the restricted budget. In this case, the estimated traffic flow has a major effect on priority evaluation. In the former paper , an algorithm was proposed for estimating the trip distribution between each pair of zones such as harbours and straits. This paper aims to formulate a simulation model for estimating the dynamic traffic flow per area in the Korea coastal waterway. The model consists of the algorithm constrined by the statistical movement of ships and the observed data, the regression analysis and the traffic network evaluations. The processed results of traffic flow except fishing vessel are summarized as follows ; 1) In 2000, the traffic congestions per area are estimated, in proportion of ship's number (tonnage), as Busan area 22.3%(44.5%), Yeosu area 19.8%(11.2%), Wando-Jeju area18.1%(6.8%), Mokpo area 14.9%(9.9%), Gunsan area 9.1%(9.3%), Inchon area 8.1%(7.7%), Pohang area 5.5%(8.5%), and Donghae area 2.2%(2.1%). 2) For example in Busan area, the increment of traffic volume per annum is estimated 4, 102 ships (23 million tons) and the traffic flow in 2000 is evaluated 158, 793 ships (687 million tons). 3) consequently, the increment of traffic volume in Busan area is found the largest and followed by Yeosu, Wando-Jeju area. Also, the traffic flow per area in 2000 has the same order.

  • PDF

DEVELOPMENT OF MATDYMO(MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) II: DEVELOPMENT OF VEHICLE AND DRIVER AGENT

  • Cho, K.Y.;Kwon, S.J.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the companion paper, the composition and structure of the MATDYMO (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model) were proposed. MATDYMO consists of the road management system, the vehicle motion control system, the driver management system, and the integration control system. Among these systems, the road management system and the integration control system were discussed In the companion paper. In this paper, the vehicle motion control system and the driver management system are discussed. The driver management system constructs the driver agent capable of having different driving styles ranging from slow and careful driving to fast and aggressive driving through the yielding index and passing index. According to these indices, the agents pass or yield their lane for other vehicles; the driver management system constructs the vehicle agents capable of representing the physical vehicle itself. A vehicle agent shows its behavior according to its dynamic characteristics. The vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation is conducted for an interrupted flow model and its results are verified by comparison with the results from a commercial software, TRANSYT-7F. The interrupted flow model simulation is implemented for three cases. The first case analyzes the agents' behaviors in the interrupted flow model and it confirms that the agent's behavior could characterize the diversity of human behavior and vehicle well through every rule and communication frameworks. The second case analyzes the traffic signals changed at different intervals and as the acceleration rate changed. The third case analyzes the effects of the traffic signals and traffic volume. The results of these analyses showed that the change of the traffic state was closely related with the vehicle acceleration rate, traffic volume, and the traffic signal interval between intersections. These simulations confirmed that MATDYMO can represent the real traffic condition of the interrupted flow model. At the current stage of development, MATDYMO shows great promise and has significant implications on future traffic state forecasting research.

A Flow Analysis Framework for Traffic Video

  • Bai, Lu-Shuang;Xia, Ying;Lee, Sang-Chul
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • The fast progress on multimedia data acquisition technologies has enabled collecting vast amount of videos in real time. Although the amount of information gathered from these videos could be high in terms of quantity and quality, the use of the collected data is very limited typically by human-centric monitoring systems. In this paper, we propose a framework for analyzing long traffic video using series of content-based analyses tools. Our framework suggests a method to integrate theses analyses tools to extract highly informative features specific to a traffic video analysis. Our analytical framework provides (1) re-sampling tools for efficient and precise analysis, (2) foreground extraction methods for unbiased traffic flow analysis, (3) frame property analyses tools using variety of frame characteristics including brightness, entropy, Harris corners, and variance of traffic flow, and (4) a visualization tool that summarizes the entire video sequence and automatically highlight a collection of frames based on some metrics defined by semi-automated or fully automated techniques. Based on the proposed framework, we developed an automated traffic flow analysis system, and in our experiments, we show results from two example traffic videos taken from different monitoring angles.

  • PDF

Quality-of-Service Mechanisms for Flow-Based Routers

  • Ko, Nam-Seok;Hong, Sung-Back;Lee, Kyung-Ho;Park, Hong-Shik;Kim, Nam
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.183-193
    • /
    • 2008
  • In this paper, we propose quality of service mechanisms for flow-based routers which have to handle several million flows at wire speed in high-speed networks. Traffic management mechanisms are proposed for guaranteed traffic and non-guaranteed traffic separately, and then the effective harmonization of the two mechanisms is introduced for real networks in which both traffic types are mixed together. A simple non-work-conserving fair queuing algorithm is proposed for guaranteed traffic, and an adaptive flow-based random early drop algorithm is proposed for non-guaranteed traffic. Based on that basic architecture, we propose a dynamic traffic identification method to dynamically prioritize traffic according to the traffic characteristics of applications. In a high-speed router system, the dynamic traffic identification method could be a good alternative to deep packet inspection, which requires handling of the IP packet header and payload. Through numerical analysis, simulation, and a real system experiment, we demonstrate the performance of the proposed mechanisms.

  • PDF

Analysis of Marine Traffic Feature for Safety Assessment at Southern Entrance of the Istanbul Strait-I

  • Aydogdu, Volkan;Park, Jin-Soo;Keceli, Yavuz;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.521-527
    • /
    • 2008
  • The Istanbul Strait is one of the important waterways in the world. And its southern entrance has a highly congested local traffic. Till now there are several studies regarding how the Istanbul Strait is dangerous to navigate and how those dangers can be mitigated. But there is no study regarding local traffic which is posing great collision risk. In a certain traffic area, marine traffic safety assessment parameters are traffic volume, frequency of collision avoidance maneuver, traffic density, traffic flow and potential encounter, In this paper local traffic volume, traffic flow and potential encounter number of local traffic vessels and possibility of collision are investigated in order to find degree of danger at the southern entrance of the Istanbul Strait. Finally by utilizing those, risky areas are determined for southern entrance of the Istanbul Strait. Results have been compared to a previous study regarding risk analysis at congested areas of the Istanbul Strait (Aydogdu, 2006) and consistency of the results were presented.

OpenFlow Network Performance Evaluation under Heterogeneous Traffic (혼합트래픽 환경에서 Open Flow 네트워크 성능 평가)

  • Yeom, Jae Keun;Lee, Chang-Moo;Choi, Deok Jae;Seok, Seung Jun;Song, Wang Cheol;Huh, Jee-Wan
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.46-53
    • /
    • 2012
  • The traffic in research network for the new structure of the network and new service research has the various properties. From the perspective of a specific traffic point of view, transmission of traffic with different requirements using a single routing protocol is an obstacle to satisfy requirements. In this study, we classify the properties of the traffic into two types. We propose the way that we can get the overall optimization effect, the experiment proves it by providing independent multiple forwarding path by applying optimized algorithm by types. In order to distinguish each type of traffic we use the ports on the switch and in order to implement independent path we apply OpenFlow system. In other words, we present the measure that can be implemented to improve the satisfaction of the traffic by making multiple paths by OpenFlow controller according to the type of traffic and by enforcing in Forwarder.

A Study on the Impacts of Changes in Road Traffic Conditions and Speed Limits on Traffic Flow and Safety (도로교통 여건과 제한속도 변화에 따른 교통소통과 안전에 관한 영향 분석 연구)

  • Nam sik Moon;Eon kyo Shin;Ju hyun Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.32-49
    • /
    • 2024
  • In this paper, we analyzed the impacts of road traffic conditions and speed limit changes on traffic flow and safety. Travel speed and moving speed were set as traffic flow indicators and'moving speed-travel speed',speed deviation, large speed deviation ratio, and number of conflicts were set as safety indicators, and the impacts of changes in road traffic conditions and speed limits on these were analyzed. According to the analysis results, the speed limit had a significant impacts on the traffic indicators, but did not significantly affect the safety indicators. As a result of the statistical validity test, it was proven that the traffic flow index increases as the speed limit increases. However, although safety indicators often increase, their validity has not been proven statistically. Therefore, if the speed limit is set and operated by properly considering the traffic flow status according to various road conditions and changes in traffic volume, it can be said to match the speed at which drivers drive and improve traffic flow and safety. Therefore, it is expected that calculating the speed limit considering the traffic flow indicators and safety indicators presented in this paper and operating the speed limit according to changes in traffic volume will contribute to stabilizing the traffic flow on the road.

Exploring Flow Characteristics in IPv6: A Comparative Measurement Study with IPv4 for Traffic Monitoring

  • Li, Qiang;Qin, Tao;Guan, Xiaohong;Zheng, Qinghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1307-1323
    • /
    • 2014
  • With the exhaustion of global IPv4 addresses, IPv6 technologies have attracted increasing attentions, and have been deployed widely. Meanwhile, new applications running over IPv6 networks will change the traditional traffic characteristics obtained from IPv4 networks. Traditional models obtained from IPv4 cannot be used for IPv6 network monitoring directly and there is a need to investigate those changes. In this paper, we explore the flow features of IPv6 traffic and compare its difference with that of IPv4 traffic from flow level. Firstly, we analyze the differences of the general flow statistical characteristics and users' behavior between IPv4 and IPv6 networks. We find that there are more elephant flows in IPv6, which is critical for traffic engineering. Secondly, we find that there exist many one-way flows both in the IPv4 and IPv6 traffic, which are important information sources for abnormal behavior detection. Finally, in light of the challenges of analyzing massive data of large-scale network monitoring, we propose a group flow model which can greatly reduce the number of flows while capturing the primary traffic features, and perform a comparative measurement analysis of group users' behavior dynamic characteristics. We find there are less sharp changes caused by abnormity compared with IPv4, which shows there are less large-scale malicious activities in IPv6 currently. All the evaluation experiments are carried out based on the traffic traces collected from the Northwest Regional Center of CERNET (China Education and Research Network), and the results reveal the detailed flow characteristics of IPv6, which are useful for traffic management and anomaly detection in IPv6.

A Study on Extraction Method of Hazard Traffic Flow Segment (고속도로 위험 교통류 구간 추출 방안 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2021
  • The number of freeway traffic accidents in Korea is about 4,000 as of 2020, and deaths per traffic accident is about 3.7 times higher than other roads due to non-recurring congestion and high driving speed. Most of the accident types on freeways are side and rear-end collisions, and one of the main factors is hazard traffic flow caused by merge, diverge and accidents. Therefore, the hazard traffic flow, which appears in a continuous flow such as a freeway, can be said to be important information for the driver to prevent accidents. This study tried to classify hazard traffic flows, such as the speed change point and the section where the speed difference by lane, using individual vehicle information. The homogeneous segment of speed was classified using spatial separation based on geohash and space mean speed that can indicate the speed difference of individual vehicles within the same section and the speed deviation between vehicles. As a result, I could extract the diverging influence segment and the hazard traffic flow segment that can provide dangerous segments information of freeways.