• Title/Summary/Keyword: Traffic Distribution

Search Result 1,018, Processing Time 0.031 seconds

A Study on the Analysis of Traffic Distribution and Traffic Pattern on Traffic Route using ND-K-S (ND-K-S를 적용한 항로 통항분포와 통항패턴 분석에 관한 연구)

  • Kim, Jong-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.446-452
    • /
    • 2018
  • A traffic route is an area associated with high risk for accidents due to the flow of heavy traffic. Despite this concern, most studies related to traffic focus solely on traffic distribution. Therefore, there is a need for studies investigating the characteristics of ships' routes and traffic patterns. In this study, an investigation was carried out to analyze the traffic distribution and pattern in 3 major traffic routes for 3 days. For the purpose of the study, based on the prevailing traffic conditions, the route was divided into 10 gate lines. The ships passing through the lines were also classified into either small, medium and large. ND-K-S (normal distribution, kurtosis, and skewness) test was carried out for the traffic distribution at each gate line based on the information analyzed on each traffic route. The analysis of the results obtained from the ND test showed that large vessels have normal distribution, medium sized vessels have satisfied normal distribution in one-way route only while small sized vessels do not have normal distribution. According to the result obtained from the K-S test, normal traffic pattern shows a significant difference between two-way route and one-way route. Results obtained from the K test result shows that in the case of one-way route, vessels have a traffic pattern using a wide range on traffic route. Further analysis shows that vessels concentrate on one side of route in case of two-way route. Results obtained from the S test show that, in case of one-way route, vessels have a normal traffic pattern according to center line. However, analysis pf the results shows that vessels are shifted to the right side of route in case of two-way route. Despite these findings, it should be noted that this study was carried out in only 3 ports, therefore there is need for investigation to be carried out in various routes and conditions in future studies.

Vessel traffic geometric probability approaches with AIS data in active shipping lane for subsea pipeline quantitative risk assessment against third-party impact

  • Tanujaya, Vincent Alvin;Tawekal, Ricky Lukman;Ilman, Eko Charnius
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • A subsea pipeline designed across active shipping lane prones to failure against external interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) for subsea pipeline against vessel anchor dropping and dragging and vessel sinking.

Design and Implementation of Cyber Warfare Training Data Set Generation Method based on Traffic Distribution Plan (트래픽 유통계획 기반 사이버전 훈련데이터셋 생성방법 설계 및 구현)

  • Kim, Yong Hyun;Ahn, Myung Kil
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.71-80
    • /
    • 2020
  • In order to provide realistic traffic to the cyber warfare training system, it is necessary to prepare a traffic distribution plan in advance and to create a training data set using normal/threat data sets. This paper presents the design and implementation results of a method for creating a traffic distribution plan and a training data set to provide background traffic like a real environment to a cyber warfare training system. We propose a method of a traffic distribution plan by using the network topology of the training environment to distribute traffic and the traffic attribute information collected in real and simulated environments. We propose a method of generating a training data set according to a traffic distribution plan using a unit traffic and a mixed traffic method using the ratio of the protocol. Using the implemented tool, a traffic distribution plan was created, and the training data set creation result according to the distribution plan was confirmed.

A Method to Predict Road Traffic Noise Using the Weibull Distribution (Weibull분포를 이용한 도로교통소음의 예측에 관한 연구)

  • 김갑수
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.2
    • /
    • pp.73-80
    • /
    • 1987
  • Various procedures for evaluation of traffic noise annoyance have been proposed. However, most of the studies of this type are restricted for improving traffic flow. In this paper, a method to predict the road traffic noise is proposed in terms of equivalent continuous A-Weighted sound pressure level (Leq), based on a probability model. First, distribution of the road traffic noise level are investigated. second, the weibull distribution parameters are estimated by using the quantification theory. Finally, a prediction model of the road traffic noise is proposed based on the weibull distribution model The predicted values of the Leq are closely matched the measured data.

  • PDF

A Study on the Optimal Probability Distribution for the Time Interval Between Ships on the Traffic Route of the Busan North Port (부산 북항 통항 선박간의 시간간격 최적 확률분포에 관한 연구)

  • Kim, Jong-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.413-419
    • /
    • 2019
  • Traffic routes typically have heavy traffic. Especially, the entrance of the route has a high risk of accidents occurring because of ships entering and exiting the port. However, almost of studies have focused on the distribution of traffic on the route. Thus, studies on the distribution between ships for passing through the route are insufficient. The purpose of this study was to analysis the traffic in the Busan north port No.1 route for one week. Based on present traffic conditions, one gate line was settled on the route with an analysis of traffic conditions. Based on the analysis data, each optimal time probability distribution between ships was divided into inbound/outbound and traffic volume. An analysis of the optimal probability distribution, was applied to 31 probability distributions divided into bounded, unbounded, non-negative, and advanced probability distribution. The KS test was applied for identifying three major optimal time probability distributions. According to the KS test results, the Wakeby distribution is the best optimal time probability distribution on the designated route. Although the optimal time probability distribution for other transportation studies such as on vehicles on highways is a non-negative probability distribution, this distribution is an advanced probability distribution. Thus, the application of major probability distribution for using other transportation studies is not applicable to this study Additionally, the distance between ships in actual traffic surveys and the distance estimated by the optimal probability distribution were compared. As a result of the comparison, those distances were fairly similar. However, this study was conducted in only one major port. Thus, it is necessary to investigate the time between ships and calculate a traffic volume on varying routes in future studies.

Estimating Suitable Probability Distribution Function for Multimodal Traffic Distribution Function

  • Yoo, Sang-Lok;Jeong, Jae-Yong;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • The purpose of this study is to find suitable probability distribution function of complex distribution data like multimodal. Normal distribution is broadly used to assume probability distribution function. However, complex distribution data like multimodal are very hard to be estimated by using normal distribution function only, and there might be errors when other distribution functions including normal distribution function are used. In this study, we experimented to find fit probability distribution function in multimodal area, by using AIS(Automatic Identification System) observation data gathered in Mokpo port for a year of 2013. By using chi-squared statistic, gaussian mixture model(GMM) is the fittest model rather than other distribution functions, such as extreme value, generalized extreme value, logistic, and normal distribution. GMM was found to the fit model regard to multimodal data of maritime traffic flow distribution. Probability density function for collision probability and traffic flow distribution will be calculated much precisely in the future.

Effects of Non-Uniform Traffic Distribution on the Capacity of Reverse Link CDMA System

  • Cho, Choon-Geun;Ann, Jong-Hoon;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12A
    • /
    • pp.1828-1835
    • /
    • 2000
  • In this paper, we analyzed the other-cell interference characteristics for various non-uniform traffic distributions and their effects on the capacity of multi-cell CDMA system. We consider three different traffic distributions, i.e., linear, exponential and Gaussian traffic distribution with distribution parameters. Changing the distribution parameter, we can obtain the center-focused distributions or uniform distributions for each model. From the results of other-cell interference calculation we can see that the other-cell interference decreases, as the user concentrates on the base station. Also using frequency reuse efficiency indicating the capacity reduction of a multi-cell system when compared to a single cell system, we evaluate the effect of traffic distribution on the reverse link CDMA capacity. For linear case, the capacity of multi-cell system is reduced to 0.637∼0.867 times that of single cell system. On the other hand, for both exponential and Gaussian cases, the capacity under a multi-cell environment is equal to 70∼100% of that under a single cell. Therefore, we conclude that the average capacity of multi-cell CDMA system are increased when users are likely to be at near the cell base station due to reduced total other-cell interference and decreased when users exist at near the cell edge regardless of traffic distribution models.

  • PDF

Modeling and Analysis of Wireless Lan Traffic (무선 랜 트래픽의 분석과 모델링)

  • Yamkhin, Dashdorj;Lee, Seong-Jin;Won, You-Jip
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.667-680
    • /
    • 2008
  • In this work, we present the results of our empirical study on 802.11 wireless LAN network traffic. We collect the packet trace from existing campus wireless LAN infra-structure. We analyzed four different data sets: aggregate traffic, upstream traffic, downstream traffic, tcp only packet trace from aggregate traffic. We analyze the time series aspect of underlying traffic (byte count process and packet count process), marginal distribution of time series, and packet size distribution. We found that in all four data sets there exist long-range dependent property in byte count and packet count process. Inter-arrival distribution is well fitted with Pareto distribution. Upstream traffic, i.e. from the user to Internet, exhibits significant difference in its packet size distribution from the rests. Average packet size of upstream traffic is 151.7 byte while average packet size of the rest of the data sets are all greater than 260 bytes. Packets with full data payloads constitutes 3% and 10% in upstream traffic and the downstream traffic, respectively. Despite the significant difference in packet size distribution, all four data sets have similar Hurst values. The Hurst alone does not properly explain the stochastic characteristics of the underlying traffic. We model the underlying traffic using fractional-ARIMA (FARIMA) and fractional Gaussian Noise (FGN). While the fractional Gaussian Noise based method is computationally more efficient, FARIMA exhibits superior performance in accurately modeling the underlying traffic.

A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium

  • Sung, Ki-Seok;Rakha, Hesham
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-69
    • /
    • 2009
  • A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.

Development of Analysis Module for Marine Traffic Information Using PC Camera

  • Moon Serng-Bae;Lee Geun-Sil;Jun Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.313-318
    • /
    • 2005
  • Usually marine traffic survey has been conducted by some methods like an ocular observation using portable RADAR, a questionnaire, etc. But these should have expended a lot of manpower and expenses. In this paper, we have developed new observation module which could capture the RADAR image using PC camera simply, and allowed as to track targets on the PC monitor directly. And it has been programmed to make a database of RADAR image, target's track and information, and analyze the marine traffic tendency in various ways like vessel number crossed over gate line, vessel's velocity distribution in gate line, traffic density distribution, etc. We have confirmed that this module could observe and analyze the marine traffic efficiently and economically through several on-the-spot experiments.