• Title/Summary/Keyword: Traffic Data

Search Result 4,783, Processing Time 0.028 seconds

Research on Relationship between Drivers' Self-control, Driving Behavior and Driving Stress (운전자의 자기통제력, 운전행동과 운전스트레스의 관련성)

  • Hwang, Do-Yeon;Kim, Hee-Dong;Baek, Ji-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.5
    • /
    • pp.229-238
    • /
    • 2019
  • The aim of the research is to investigate relationship between drivers' self-control, driving behavior and driving stress. 180 people who have driver's licence and have experiences in driving in Gwangju and Jeonnam area participated for the research. The survey was conducted from 29th April 2015 to 24th July 2015 and data was analysed to figure out the relationship between drivers' self-control, driving behavior and driving stress. As a result, Firstly, drivers' self-control affected mistakes, violations, errors of driving behavior, and driving environment, traffic regulations, accident control, time pressure of driving stress. It showed a statistical significant difference and the higher drivers' self-control is, the lower sub construct factor of driving behavior and driving stress. Secondly, those factors of drivers' self-control, driving behavior and driving stress were correlated. The result showed the relationship between drivers' self-control, driving behavior and driving stress. It is also possible to utilize the information to prevent car accidents. Finally, it is expected to do research further by expanding the participants into multiple areas of people.

GIS Optimization for Bigdata Analysis and AI Applying (Bigdata 분석과 인공지능 적용한 GIS 최적화 연구)

  • Kwak, Eun-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.171-173
    • /
    • 2022
  • The 4th industrial revolution technology is developing people's lives more efficiently. GIS provided on the Internet services such as traffic information and time information makes people getting more quickly to destination. National geographic information service(NGIS) and each local government are making basic data to investigate SOC accessibility for analyzing optimal point. To construct the shortest distance, the accessibility from the starting point to the arrival point is analyzed. Applying road network map, the starting point and the ending point, the shortest distance, the optimal accessibility is calculated by using Dijkstra algorithm. The analysis information from multiple starting points to multiple destinations was required more than 3 steps of manual analysis to decide the position for the optimal point, within about 0.1% error. It took more time to process the many-to-many (M×N) calculation, requiring at least 32G memory specification of the computer. If an optimal proximity analysis service is provided at a desired location more versatile, it is possible to efficiently analyze locations that are vulnerable to business start-up and living facilities access, and facility selection for the public.

  • PDF

Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access (전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법)

  • Jeon Zang Woo;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.299-308
    • /
    • 2023
  • As the spectrum shortage problem has accelerated by the emergence of various services, New Radio-Unlicensed (NR-U) has appeared, allowing users who communicated in licensed bands to communicate in unlicensed bands. However, NR-U network users reduce the performance of Wi-Fi network users who communicate in the same unlicensed band. In this paper, we aim to simultaneously maximize the fairness and throughput of the unlicensed band, where the NR-U network users and the WiFi network users coexist. First, we propose an optimal power allocation scheme based on Monte Carlo Policy Gradient of reinforcement learning to maximize the sum of rates of NR-U networks utilizing rate-splitting multiple access in unlicensed bands. Then, we propose a channel occupancy time division algorithm based on sequential Raiffa bargaining solution of game theory that can simultaneously maximize system throughput and fairness for the coexistence of NR-U and WiFi networks in the same unlicensed band. Simulation results show that the rate splitting multiple access shows better performance than the conventional multiple access technology by comparing the sum-rate when the result value is finally converged under the same transmission power. In addition, we compare the data transfer amount and fairness of NR-U network users, WiFi network users, and total system, and prove that the channel occupancy time division algorithm based on sequential Raiffa bargaining solution of this paper satisfies throughput and fairness at the same time than other algorithms.

A Green View Index Improvement Program for Urban Roads Using a Green Infrastructure Theory - Focused on Chengdu City, Sichuan Province, China - (그린인프라스트럭처 개념을 적용한 가로 녹시율 개선 방안 - 중국 쓰촨성(四川省) 청두시(成都市)을 중심으로 -)

  • Hou, ShuJun;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.61-74
    • /
    • 2023
  • The concept of "green infrastructure" emphasizes the close relationship between natural and urban social systems, thereby providing services that protect the ecological environment and improve the quality of human life. The Green View Index(GVI) is an important indicator for measuring the supply of urban green space and contains more 3D spatial elements concerning the green space ratio. This study focused on an area within the Third Ring Road in the city of Chengdu, Sichuan Province, China. The purposes of this study were three-fold. First, this study analyzed the spatial distribution characteristics of the GVI in urban streets and its correlation with the urban park green space system using Street View image data. Second to analyze the characteristics of low GVI streets were analyzed. Third, to analyze the connectivity between road traffic and street GVI using space syntax were analyzed. This study found that the Street GVI was higher in the southwestern part of the study area than in the northeastern part. The spatial distribution of the street GVI correlated with urban park green space. Second, the street areas with low GVI are mainly concentrated in areas with dense commercial facilities, areas with new construction, areas around elevated roads, roads below Class 4, and crossroads areas. Third, the high integration and low GVI areas were mainly concentrated within the First Ring Road in the city as judged by the concentration of vehicles and population. This study provides base material for future programs to improve the GVI of streets in Chengdu, Sichuan Province.

Small-cell Resource Partitioning Allocation for Machine-Type Communications in 5G HetNets (5G 이기종 네트워크 환경에서 머신타입통신을 위한 스몰셀 자원 분리 할당 방법)

  • Ilhak Ban;Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2023
  • This paper proposes a small cell resource partitioning allocation method to solve interference to machine type communication devices (MTCD) and improve performance in 5G heterogeneous networks (HetNet) where macro base station (MBS) and many small cell base stations (SBS) are overlaid. In the 5G HetNet, since various types of MTCDs generate data traffic, the load on the MBS increases. Therefore, in order to reduce the MBS load, a cell range expansion (CRE) method is applied in which a bias value is added to the received signal strength from the SBS and MTCDs satisfying the condition is connected to the SBS. More MTCDs connecting to the SBS through the CRE will reduce the load on the MBS, but performance of MTCDs will degrade due to interference, so a method to solve this problem is needed. The proposed small cell resource partitioning allocation method allocates resources with less interference from the MBS to mitigate interference of MTCDs newly added in the SBS with CRE, and improve the overall MTCD performace using separating resources according to the performance of existing MTCDs in the SBS. Through simulation results, the proposed small cell resource partitioning allocation method shows performance improvement of 21% and 126% in MTCDs capacity connected to MBS and SBS respectively, compared to the existing resource allocation methods.

Location Classification and Its Utilization for Illegal Parking Enforcement: Focusing on the Case of Gyeonggi (불법주정차 단속을 위한 지역(장소) 분류 및 활용 방안: 경기도를 중심으로)

  • Hyeon Han;So-yeon Choe;So-Hyun Lee
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.113-130
    • /
    • 2023
  • Due to economic development and increasing gross national income, the number of automobiles continues to rise, leading to a serious issue of illegal parking due to limited road conditions and insufficient parking facilities. Illegal parking causes significant inconvenience and displeasure to people and can even result in accidents and loss of lives. The severity of accidents and their consequences, related to the growing number of vehicles and illegal parking, is escalating, particularly in the metropolitan areas. Consequently, efforts are being made to address this problem as a cause of social issues and come up with measures to reduce illegal parking. In particular, half of the public complaints in the metropolitan area are related to illegal parking, and the highest physical and human damage occurs in Gyeonggi. Thus, this study aims to use machine learning techniques based on data related to illegal parking in Suwon city, Gyeonggi, to categorize regional characteristics and propose effective measures to crack down on illegal parking. Additionally, practical, social, policy, and legal measures to decrease illegal parking in the metropolitan area are suggested. This study has academic significance in that it solved the problem of illegal parking, which is mentioned as one of the social problems that cause traffic congestion, by classifying regional characteristics using K-prototype, a machine learning algorithm. Furthermore, the results of this study contribute to practical and social aspects by providing measures to decrease illegal parking in the metropolitan area.

Real-time Road Surface Recognition and Black Ice Prevention System for Asphalt Concrete Pavements using Image Analysis (실시간 영상이미지 분석을 통한 아스팔트 콘크리트 포장의 노면 상태 인식 및 블랙아이스 예방시스템)

  • Hoe-Pyeong Jeong;Homin Song;Young-Cheol Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.82-89
    • /
    • 2024
  • Black ice is very difficult to recognize and reduces the friction of the road surface, causing automobile accidents. Since black ice is difficult to detect, there is a need for a system that identifies black ice in real time and warns the driver. Various studies have been conducted to prevent black ice on road surfaces, but there is a lack of research on systems that identify black ice in real time and warn drivers. In this paper, an real-time image-based analysis system was developed to identify the condition of asphalt road surface, which is widely used in Korea. For this purpose, a dataset was built for each asphalt road surface image, and then the road surface condition was identified as dry, wet, black ice, and snow using deep learning. In addition, temperature and humidity data measured on the actual road surface were used to finalize the road surface condition. When the road surface was determined to be black ice, the salt spray equipment installed on the road was automatically activated. The surface condition recognition system for the asphalt concrete pavement and black ice automatic prevention system developed in this study are expected to ensure safe driving and reduce the incidence of traffic accidents.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

A Study on Extraction of Main Indexes for the Development of Safety and Health Level Evaluation in Korea Post (공영우편업 안전보건 수준평가 체계 개발을 위한 주요 지표 도출에 관한 연구)

  • Hyungoo Lee;Jaeyun Lee;Taekeun Oh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.681-686
    • /
    • 2024
  • Korea Post service provides public services to the public, including mail, deposits, and insurance. The work of the postal activities is labor-intensive and physically intensive. Postal workers are exposed to the risk of injury and musculoskeletal disorders, and delivery workers are exposed to the risk of traffic accidents. The Postal Service Headquarters has strengthened safety and health activities to improve hazardous risk factors in the field. In addition, we are promoting activities to spread safety culture continuously. However, it is difficult to determine whether these activities were applied well to the site of the affiliated institution, and it is not known whether they were effective in preventing safety accidents. In addition, there is no objective evaluation system, so the current level of safety and health and problems related to workplace safety and health cannot be identified. Therefore, in this study, we tried to prepare basic data to propose an evaluation system, standard, and evaluation index suitable for the postal business so that the safety level of the public postal business can be evaluated efficiently and objectively. In other words, it was intended to analyze the characteristics of the public postal business and prepare the basis for the development of evaluation indicators considering it, and through this, an effective level evaluation can be performed and problems in safety and health management by institution can be identified.

Development of Robotic Inspection System over Bridge Superstructure (교량 상판 하부 안전점검 로봇개발)

  • Nam Soon-Sung;Jang Jung-Whan;Yang Kyung-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-185
    • /
    • 2003
  • The increase of traffic over a bridge has been emerged as one of the most severe problems in view of bridge maintenance, since the load effect caused by the vehicle passage over the bridge has brought out a long-term damage to bridge structure, and it is nearly impossible to maintain operational serviceability of bridge to user's satisfactory level without any concern on bridge maintenance at the phase of completion. Moreover, bridge maintenance operation should be performed by regular inspection over the bridge to prevent structural malfunction or unexpected accidents front breaking out by monitoring on cracks or deformations during service. Therefore, technical breakthrough related to this uninterested field of bridge maintenance leading the public to the turning point of recognition is desperately needed. This study has the aim of development on automated inspection system to lower surface of bridge superstructures to replace the conventional system of bridge inspection with the naked eye, where the monitoring staff is directly on board to refractive or other type of maintenance .vehicles, with which it is expected that we can solve the problems essentially where the results of inspection are varied to change with subjective manlier from monitoring staff, increase stabilities in safety during the inspection, and make contribution to construct data base by providing objective and quantitative data and materials through image processing method over data captured by cameras. By this system it is also expected that objective estimation over the right time of maintenance and reinforcement work will lead enormous decrease in maintenance cost.

  • PDF