• 제목/요약/키워드: Traffic Controller

검색결과 317건 처리시간 0.025초

A Simulation Study on Queueing Delay Performance of Slotted ALOHA under Time-Correlated Channels

  • Yoora Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.43-51
    • /
    • 2023
  • Slotted ALOHA (S-ALOHA) is a classical medium access control protocol widely used in multiple access communication networks, supporting distributed random access without the need for a central controller. Although stability and delay have been extensively studied in existing works, most of these studies have assumed ideal channel conditions or independent fading, and the impact of time-correlated wireless channels has been less addressed. In this paper, we investigate the queueing delay performance in S-ALOHA networks under time-correlated channel conditions by utilizing a Gilbert-Elliott model. Through simulation studies, we demonstrate how temporal correlation in the wireless channel affects the queueing delay performance. We find that stronger temporal correlation leads to increased variability in queue length, a larger probability of having queue overflows, and higher congestion levels in the S-ALOHA network. Consequently, there is an increase in the average queueing delay, even under a light traffic load. With these findings, we provide valuable insights into the queueing delay performance of S-ALOHA networks, supplementing the existing understanding of delay in S-ALOHA networks.

AP-SDN: Action Program enabled Software-Defined Networking Architecture

  • Zheng Zhao;Xiaoya Fan;Xin Xie;Qian Mao;Qi Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1894-1915
    • /
    • 2023
  • Software-Defined Networking (SDN) offers several advantages in dynamic routing, flexible programmable control and custom application-driven network management. However, the programmability of the data plane in traditional SDN is limited. A network operator cannot change the ability of the data plane and perform complex packet processing on the data plane, which limits the flexibility and extendibility of SDN. In the paper, AP-SDN (Action Program enabled Software-Defined Networking) architecture is proposed, which extends the action set of SDN data plane. In the proposed architecture, a modified Open vSwitch is utilized in the data plane allowing the execution of action programs at runtime, thus enabling complex packet processing. An example action program is also implemented which transparently encrypts traffic for terminals. At last, a prototype system of AP-SDN is developed and experiments show its effectiveness and performance.

Development of an Online Evaluation Model for Traffic Signal Control System (교통신호제어시스템 온라인 평가모형 개발)

  • Go, Gwang-Yong;Lee, Seung-Hwan
    • Journal of Korean Society of Transportation
    • /
    • 제26권3호
    • /
    • pp.31-40
    • /
    • 2008
  • There have been a lot of efforts to find more accurate evaluation methods for traffic signal control effectiveness for a long period of time. Nowadays a newly advanced method called HILSS, 'Hardware-in-the-Loop-Simulation System', is used to evaluate the overall traffic control's effectiveness including physical control environments like communication conditions, hardware performance, controller's mechanical operations and so on. In this study, an Online-HILSS model has been developed, which runs on CORSIM(5.0) micro traffic simulation model on-lined to COSMOS. For the verification of the model, three tests are performed as follows; (1) a comparison of TMC's timing plan with the simulated green interval, (2) as a case study, a delay distribution comparison of the online simulation with the CORSIM stand-alone simulation. The result of the first test shows that the model can run the simulation green interval by TMC's timing plan correctly. The result of second test shows that the online simulation of the model brings the same simulation results with the CORSIM offline simulation in case of the same timing plan. These results mean that the online evaluation model could be a reliable tool to measure a real-time signal control effectiveness of a wide area street network with the HILSS method.

A Study on the Imputation for Missing Data in Dual-loop Vehicle Detector System (차량 검지자료 결측 보정처리에 관한 연구 (이력자료 활용방안을 중심으로))

  • Kim, Jeong-Yeon;Lee, Yeong-In;Baek, Seung-Geol;Nam, Gung-Seong
    • Journal of Korean Society of Transportation
    • /
    • 제24권7호
    • /
    • pp.27-40
    • /
    • 2006
  • The traffic information is provided, which based on the volume of traffic, speed, occupancy collected through the currently operating Vehicle Detector System(VDS). In addition to the trend in utilization fold of traffic information is increasing gradually with the applied various fields and users. Missing data in Vehicle detector data means series of data transmitted to controller without specific property. The missing data does not have a data property, so excluded at the whole data Process Hence, increasing ratio of missing data in VDS data inflicts unreliable representation of actual traffic situation. This study presented the imputation process due out which applied the methodologies that utilized adjacent stations reference and historical data utilize about missing data. Applied imputation process methodologies to VDS data or SeoHaeAn/Kyongbu Expressway, currently operation VDS, after processes at missing data ratio of an option. Imputation process held presented to per lane-30seconds-period, and morning/afternoon/daily time scope ranges classified, and analyzed an error of imputed data preparing for actual data. The analysis results, an low error occurred relatively in the results of the imputation process way that utilized a historical data compare with adjacent stations reference methods.

User Bandwidth Demand Centric Soft-Association Control in Wi-Fi Networks

  • Sun, Guolin;Adolphe, Sebakara Samuel Rene;Zhang, Hangming;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.709-730
    • /
    • 2017
  • To address the challenge of unprecedented growth in mobile data traffic, ultra-dense network deployment is a cost efficient solution to offload the traffic over some small cells. The overlapped coverage areas of small cells create more than one candidate access points for one mobile user. Signal strength based user association in IEEE 802.11 results in a significantly unbalanced load distribution among access points. However, the effective bandwidth demand of each user actually differs vastly due to their different preferences for mobile applications. In this paper, we formulate a set of non-linear integer programming models for joint user association control and user demand guarantee problem. In this model, we are trying to maximize the system capacity and guarantee the effective bandwidth demand for each user by soft-association control with a software defined network controller. With the fact of NP-hard complexity of non-linear integer programming solver, we propose a Kernighan Lin Algorithm based graph-partitioning method for a large-scale network. Finally, we evaluated the performance of the proposed algorithm for the edge users with heterogeneous bandwidth demands and mobility scenarios. Simulation results show that the proposed adaptive soft-association control can achieve a better performance than the other two and improves the individual quality of user experience with a little price on system throughput.

Development of Hardware-in-the-Loop Simulator for Testing Embedded System of Automatic Transmission (자동변속기용 임베디드 시스템 성능 시험을 위한 Hardware-in-the Loop 시뮬레이터 구축)

  • Jang, In-Gyu;Seo, In-Keun;Jeon, Jae-Wook;Hwang, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제14권3호
    • /
    • pp.301-306
    • /
    • 2008
  • Drivers are becoming more fatigued and uncomfortable with increase in traffic density, and this condition can lead to slower reaction time. Consequently, they may face the danger of traffic accidents due to their inability to cope with frequent gear shifting. To reduce this risk, some drivers prefer automatic transmission (AT) over manual transmission (MT). The AT offers more superior drivability and less shifting shock than the MT; therefore, the AT market share has been increasing. The AT is controlled by an electronic control unit (ECU), which provides better shifting performance. The transmission control unit (TCU) is a higher-value-added product, so the companies that have advanced technologies end to evade technology transfer. With more cars gradually using the ECU, the TCU is expected to be faster and more efficient for organic communication and arithmetic processing between the control systems than the l6-bit controller. In this paper, the model of an automatic transmission vehicle using MATLAB/Simulink is developed for the Hardware in-the-Loop (HIL) simulation with a 32-bit embedded system, and also the AT control logic for shifting is developed by using MATLAB/Simulink. The developed AT control logic, transformed automatically by real time workshop toolbox, is loaded to a 32-bit embedded system platform based on Freescale's MPC565. With both vehicle model and 32-bit embedded system platform, we make the HIL simulation system and HIL simulation of AT based on real time operating system (RTOS) is performed. According to the simulation results, the developed HIL simulator will be used for the performance test of embedded system for AT with low cost and effort.

Real-Time Classification, Visualization, and QoS Control of Elephant Flows in SDN (SDN에서 엘리펀트 플로우의 실시간 분류, 시각화 및 QoS 제어)

  • Muhammad, Afaq;Song, Wang-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제42권3호
    • /
    • pp.612-622
    • /
    • 2017
  • Long-lived flowed termed as elephant flows in data center networks have a tendency to consume a lot of bandwidth, leaving delay-sensitive short-lived flows referred to as mice flows choked behind them. This results in non-trivial delays for mice flows, eventually degrading application performance running on the network. Therefore, a datacenter network should be able to classify, detect, and visualize elephant flows as well as provide QoS guarantees in real-time. In this paper we aim to focus on: 1) a proposed framework for real-time detection and visualization of elephant flows in SDN using sFlow. This allows to examine elephant flows traversing a switch by double-clicking the switch node in the topology visualization UI; 2) an approach to guarantee QoS that is defined and administered by a SDN controller and specifications offered by OpenFlow. In the scope of this paper, we will focus on the use of rate-limiting (traffic-shaping) classification technique within an SDN network.

Distributed Machine Socialization System Implementation of Web Server based (협업 알고리즘을 활용한 분산형 Machine Socialization 시스템)

  • Hwang, Jong-sun;Lim, Hyeok;Kang, In-shik;Song, Hyun-ok;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.889-890
    • /
    • 2016
  • Existing machine-to-machine collaboration system is a centralized structure system fo built OpenWrt and a Web server on the router. But scarce resources of the router are getting more requests from the collaboration client when a problem has occurred with increasing probability of a client object, the higher the traffic. In this paper, in order to solve the problem, we propose a distributed system utilizing Machine Socialization cooperation algorithm. The MCU attached to the machine to minimize the traffic occurrence probability and loss of the data by processing to distribute the data between the server and the client. Also improve the response speed between the server and the client and the operation stop caused by the loss of data. The proposed system will be utilized if the IoT field will be high efficiency compared to existing systems.

  • PDF

Efficient Load Balancing Technique through Server Load Threshold Alert in SDN (SDN 환경에서의 서버 부하 임계치 경고를 통한 효율적인 부하분산 기법)

  • Lee, Jun-Young;Kwon, Tea-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제16권5호
    • /
    • pp.817-824
    • /
    • 2021
  • The SDN(Software Defined Networking) technology, which appeared to overcome the limitations of the existing network system, resolves the rigidity of the existing system through the separation of HW and SW in network equipment. These characteristics of SDN provide wide scalability beyond hardware-oriented network equipment, and provide flexible load balancing policies in data centers of various sizes. In the meantime, many studies have been conducted to apply the advantages of SDN to data centers and have shown their effectiveness. The method mainly used in previous studies was to periodically check the server load and perform load balancing based on this. In this method, the more the number of servers and the shorter the server load check cycle, the more traffic increases. In this paper, we propose a new load balancing technique that can eliminate unnecessary traffic and manage server resources more efficiently by reporting to the controller when a specific level of load occurs in the server to solve this limitation.

A Blockchain-enabled Multi-domain DDoS Collaborative Defense Mechanism

  • Huifen Feng;Ying Liu;Xincheng Yan;Na Zhou;Zhihong Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.916-937
    • /
    • 2023
  • Most of the existing Distributed Denial-of-Service mitigation schemes in Software-Defined Networking are only implemented in the network domain managed by a single controller. In fact, the zombies for attackers to launch large-scale DDoS attacks are actually not in the same network domain. Therefore, abnormal traffic of DDoS attack will affect multiple paths and network domains. A single defense method is difficult to deal with large-scale DDoS attacks. The cooperative defense of multiple domains becomes an important means to effectively solve cross-domain DDoS attacks. We propose an efficient multi-domain DDoS cooperative defense mechanism by integrating blockchain and SDN architecture. It includes attack traceability, inter-domain information sharing and attack mitigation. In order to reduce the length of the marking path and shorten the traceability time, we propose an AS-level packet traceability method called ASPM. We propose an information sharing method across multiple domains based on blockchain and smart contract. It effectively solves the impact of DDoS illegal traffic on multiple domains. According to the traceability results, we designed a DDoS attack mitigation method by replacing the ACL list with the IP address black/gray list. The experimental results show that our ASPM traceability method requires less data packets, high traceability precision and low overhead. And blockchain-based inter-domain sharing scheme has low cost, high scalability and high security. Attack mitigation measures can prevent illegal data flow in a timely and efficient manner.