• Title/Summary/Keyword: Traffic Congestion Control

Search Result 390, Processing Time 0.034 seconds

Optimization of Traffic Signals Using Intelligent Control Methods (지능제어기법을 이용한 신호등 주기 최적화)

  • Kim, Keun-Bum;Kim, Kyung-Keun;Chang, Wook;Park, Kwang-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.735-738
    • /
    • 1997
  • The traffic congestion caused by the exploding increase of vehicles became one of the severest social problems. Among the various approaches to solve this problem, controlling the length of traffic signals appropriately according to the individual traffic situation would be the most plausible and cost-effective method. To design a traffic signal controller which has such a property as adaptive decision-making process, we adopt fuzzy logic control method(fuzzy traffic signal controller), Moreover, using genetic algorithms we obtain an optimized fuzzy traffic signal controller (GA-fuzzy traffic signal controller). To evaluate and validate the proposed fuzzy and GA-fuzzy traffic signal controller, simulation results are presented.

  • PDF

Split-ACK Scheme for Performance Improvement of TCP Short Traffic in Wireless Environment (무선환경에서 짧은 TCP 트래픽의 성능향상을 위한 응답패킷 분할 전송 기법)

  • 진교홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.923-930
    • /
    • 2001
  • In this paper, in order to improve the performance of TCP short traffic services in wireless Internet environments, the Split-ACKs(SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless links results in congestion control procedure of TCP being invoked at the source. This causes severe end-to-end performance degradation of TCP. In this paper, to alleviate the TCP performance, the SPACK method, split acknowledgement packets in the base station, is proposed. Using computer simulation, the performance of TCP using SPACK is analyzed and shows better performance than traditional TCP protocol.

  • PDF

A Traffic congestion judgement Algorithm development for signal control using taxi gps data (택시 GPS데이터를 활용한 신호제어용 혼잡상황 판단 알고리즘 개발)

  • Lee, Choul Ki;Lee, Sang Deok;Lee, Yong Ju;Lee, Seung Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.52-59
    • /
    • 2016
  • COSMOS system which was developed in Seoul for real-time signal control was designed to judge traffic condition for practicing signal operation. However, it occurs efficiency problem that stop line detection and queue length detection could not judge overflow saturation of street. For that reason, following research process GPS data of Seoul city's corporationowned taxi to calculate travel speed that excluded existing system of stop line detection and queue length detection. Also, "Research of calculating queue length by GPS data" which was progressed with following research expressed queue length. It is based on establishing algorithm of judging congestion situation. The algorithm was applied to a few areas where appeared congestion situation consistently to confirm real time traffic condition with established network. [Entrance of the National Sport Institute ${\rightarrow}$ Gangnam station Intersection, Yuksam station intersection ${\rightarrow}$ National Sport Institute.

Performance Analysis of Call Admission Control Utilizing WLAN to Mitigate Congestion of Cellular Networks (WLAN을 이용한 셀룰러망 혼잡도 완화를 위한 호수락제어 성능 분석)

  • Seok, Woo-Jin;Hwang, Young-Ha;Noh, Sung-Kee;Kim, Sang-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.425-436
    • /
    • 2008
  • In this paper, we propose a resource effective call admission control(CAC) in integrated WLAN and cellular network. The proposed CAC mitigates the congestion of cellular network by handing over non-realtime traffic to WLAN. We analyze the proposed CAC in numerical and simulation method. The simulation results show that the proposed CAC achieves better performance than normal CAC. Especially, the proposed CAC can sustain desired QoS more robustly against high incoming non-realtime traffic load than againt realtime traffic load.

A Study on the Air Traffic Situation Variables which Influence the Job Performance of Military Air Traffic Controllers (군관제사의 직무 수행과 항공교통상황 변인의 영향 연구)

  • Sin, Hyon-Sam;Jang, Jung-Ha;Ahn, Jae-Mo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The air traffic situation variables were emphasized in this research to review the awareness level of job performance of military air traffic controllers in application of air traffic situation variables such as detection of aircraft identification, type of aircraft, position ,speed, altitude, determination of separation between departing and arriving in-trail aircraft, physical airport conditions, adverse weather conditions, NAVAID outage and ATC facilities' operational status. In this respect, This study was conducted under the auspice of ATC facility operating agencies and devoting air force air traffic controller's participation by answering the questionnaires from nine radar approach control facilities and other air traffic control towers.

A Study on Predictive Traffic Control Algorithms for ABR Services (ABR 서비스를 위한 트래픽 예측 제어 알고리즘 연구)

  • 오창윤;장봉석
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.29-37
    • /
    • 2000
  • Asynchronous transfer mode is flexible to support multimedia communication services using asynchronous time-sharing and statistical multimedia techniques to the existing data communication area, ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates, In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic control. If backward node receive the longer delayed feedback information on the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals, The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series, The predicted congestion information is backward to the node, NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction, Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.

  • PDF

Congestion Control in TCP over ATM-UBR Networks

  • Park, Woo-Chool;Park, Sang-Jun;Rhee, Byung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.88-91
    • /
    • 2000
  • In this paper we approach the problem of congestion control for TCP traffic over ATM-UBR networks by focusing on the fact that to get best performance. We study how to efficiently support TCP traffic in the subnet ATM model, when ATM is only a single link in the whole path. We show that when UBR connection. We analyze the ATM-UBR network service using the BSD 4.3 Reno, Tahoe TCP. However we found the fact that the characteristic of fast recovery algorithm makes a serious degradation of performance in multiple cell loss drop situation. We propose new fast recovery algorithm to solve the problem.

  • PDF

Traffic Flow Control Channels Analysis Using Symmetry Link Network in Wireless Communication (무선통신에서 대칭링크 네트워크를 이용한 트래픽 흐름제어 채널분석)

  • Park, Kwang-Chae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1811-1818
    • /
    • 2009
  • This paper is about the research to maintain and enhance the flow of data of the wireless traffic control. Various types of burst traffic that were found at TCP window flow control have been removed or mitigated using the two-way traffic control. Currently, TCP ACK Compression problem appears during the transmission of the wireless communication control channel because the queues are mostly located at the end system. Therefore, in this paper, the periodic bursty characterist of the source IP queue wilt be analyzed to predict the maximum value of queues. And then the prediction tool will be applied to wireless communication traffic control to handle symmetric traffic as to increase the throughput and improve the performance.

A Stabilized Queue Management Algorithm for Internet Congestion Control (인터넷 혼잡제어를 위한 안정적인 큐 관리 알고리즘)

  • 구자헌;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.70-80
    • /
    • 2004
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection). But, RED configuration has been a problem since its first proposal. This problem is that proposed configuration is only good for the particular traffic conditions studied, but may have detrimental effects if used in other conditions. While active queue management in routers and gateways can potentially reduce packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are unstable for tile various traffic conditions. The inherent problem with these queue management algorithms is that they all use static parameter setting. In this paper, in order to solve this problem, a new active queue management algorithm called SQM(Stabilized Queue Management) is proposed. This paper shows that it is easy to parameterize SQM algorithm to perform well under different congestion scenarios. This algorithm can effectively reduce packet loss while maintaining high link utilizations and is good for the various traffic conditions.